Nano Parthenolide Improves Intestinal Barrier Function of Sepsis by Inhibiting Apoptosis and ROS via 5-HTR2A.

Ning-Ke Guo, Han She, Lei Tan, Yuan-Qun Zhou, Chun-Qiong Tang, Xiao-Yong Peng, Chun-Hua Ma, Tao Li, Liang-Ming Liu
Author Information
  1. Ning-Ke Guo: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  2. Han She: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  3. Lei Tan: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  4. Yuan-Qun Zhou: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  5. Chun-Qiong Tang: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  6. Xiao-Yong Peng: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  7. Chun-Hua Ma: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  8. Tao Li: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
  9. Liang-Ming Liu: State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.

Abstract

Background: Intestinal barrier dysfunction is an important complication of sepsis, while the treatment is limited. Recently, parthenolide (PTL) has attracted much attention as a strategy of sepsis, but whether nano parthenolide (Nano PTL) is therapeutic in sepsis-induced intestinal barrier dysfunction is obscured.
Methods: In this study, cecal ligation and puncture (CLP)-induced sepsis rats and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells (IECs) were used to investigate the effect of PTL on intestinal barrier dysfunction. Meanwhile, we synthesized Nano PTL and compared the protective effect of Nano PTL with ordinary PTL on intestinal barrier function in septic rats and IECs. Network pharmacology and serotonin 2A (5-HTR2A) inhibitor were used to explore the mechanism of PTL on the intestinal barrier function of sepsis.
Results: The encapsulation rate of Nano PTL was 95±1.5%, the drug loading rate was 11±0.5%, and the average uptake rate of intestinal epithelial cells was 94%. Ordinary PTL and Nano PTL improved the survival rate and survival time of septic rats, reduced the mean arterial pressure and the serum level of inflammatory cytokines, and protected the liver and kidney functions in vivo, and increased the value of transmembrane resistance (TEER) reduced the reactive oxygen species (ROS) and apoptosis in IECs in vitro through 5-HTR2A. Nano PTL had better effect than ordinary PTL.
Conclusion: Ordinary PTL and Nano PTL can protect the intestinal barrier function of septic rats by inhibiting apoptosis and ROS through up-regulating 5-HTR2A, Nano PTL is better than ordinary PTL.

Keywords

References

  1. Gut Microbes. 2022 Jan-Dec;14(1):2127456 [PMID: 36195972]
  2. Oncol Lett. 2015 May;9(5):2135-2142 [PMID: 26137027]
  3. Int J Mol Sci. 2017 Oct 20;18(10): [PMID: 29053592]
  4. Phytomedicine. 2022 Oct;105:154373 [PMID: 35947899]
  5. Stem Cell Res Ther. 2021 May 26;12(1):299 [PMID: 34039427]
  6. J Neurophysiol. 2021 Sep 1;126(3):709-722 [PMID: 34288779]
  7. J Nanobiotechnology. 2022 Apr 20;20(1):194 [PMID: 35443712]
  8. J Cell Biochem. 2019 Sep;120(9):15695-15708 [PMID: 31144365]
  9. Comput Math Methods Med. 2022 Jul 18;2022:3744837 [PMID: 35898475]
  10. J Cell Mol Med. 2017 Sep;21(9):1668-1686 [PMID: 28244656]
  11. Biochim Biophys Acta Mol Basis Dis. 2017 Oct;1863(10 Pt B):2574-2583 [PMID: 28286161]
  12. Psychiatry Res. 2018 Jul;265:25-38 [PMID: 29680514]
  13. Acta Cardiol Sin. 2015 Jan;31(1):33-41 [PMID: 27122844]
  14. Mediators Inflamm. 2019 Mar 5;2019:7854389 [PMID: 30948926]
  15. Adv Ther. 2022 Nov;39(11):5274-5288 [PMID: 36138260]
  16. PLoS One. 2014 Sep 18;9(9):e107655 [PMID: 25233217]
  17. Neural Regen Res. 2023 Mar;18(3):506-512 [PMID: 36018155]
  18. Mediators Inflamm. 2013;2013:370804 [PMID: 23935248]
  19. Crit Care Med. 2003 Sep;31(9):2263-70 [PMID: 14501955]
  20. Dis Markers. 2022 Aug 31;2022:3117805 [PMID: 36092959]
  21. Drug Deliv. 2022 Dec;29(1):1684-1697 [PMID: 35616278]
  22. Daru. 2022 Dec;30(2):331-341 [PMID: 36197594]
  23. Phytother Res. 2021 Oct;35(10):5680-5693 [PMID: 34250656]
  24. Mater Sci Eng C Mater Biol Appl. 2016 Jan 1;58:692-9 [PMID: 26478361]
  25. Nefrologia. 2017 Jan - Feb;37(1):9-19 [PMID: 27553986]
  26. J Gastrointest Cancer. 2022 Jun;53(2):415-419 [PMID: 33742371]
  27. Inflammopharmacology. 2021 Feb;29(1):123-135 [PMID: 32924074]
  28. Front Immunol. 2021 Mar 12;12:625627 [PMID: 33790896]
  29. Clin Exp Dent Res. 2021 Feb;7(1):78-84 [PMID: 32954688]
  30. Gene. 2021 Feb 15;769:145240 [PMID: 33068678]
  31. Br J Pharmacol. 2017 Jul;174(13):2074-2084 [PMID: 28409821]
  32. EBioMedicine. 2019 Mar;41:497-508 [PMID: 30878597]
  33. Surg Infect (Larchmt). 2018 Feb/Mar;19(2):107-116 [PMID: 29364781]
  34. Int Immunopharmacol. 2016 Sep;38:132-8 [PMID: 27270078]
  35. Front Immunol. 2019 Aug 07;10:1873 [PMID: 31456801]
  36. Curr Med Sci. 2022 Aug;42(4):720-732 [PMID: 35788945]
  37. J Inflamm Res. 2021 Dec 10;14:6765-6782 [PMID: 34916824]
  38. Drug Deliv. 2022 Dec;29(1):1663-1674 [PMID: 35616281]
  39. Neuropsychopharmacology. 2007 Apr;32(4):757-64 [PMID: 16936711]
  40. Lancet. 2020 Jan 18;395(10219):200-211 [PMID: 31954465]
  41. Int J Mol Sci. 2019 Oct 29;20(21): [PMID: 31671729]

MeSH Term

Rats
Animals
Intestinal Mucosa
Reactive Oxygen Species
Intestines
Sepsis
Apoptosis

Chemicals

Reactive Oxygen Species

Word Cloud

Created with Highcharts 10.0.0PTLNanointestinalbarriersepsis5-HTR2AratsratedysfunctionIECseffectordinaryfunctionsepticROSapoptosisIntestinalparthenolidenanoepithelialcellsused5%OrdinarysurvivalreducedbetterBackground:importantcomplicationtreatmentlimitedRecentlyattractedmuchattentionstrategywhethertherapeuticsepsis-inducedobscuredMethods:studycecalligationpunctureCLP-inducedlipopolysaccharideLPS-stimulatedinvestigateMeanwhilesynthesizedcomparedprotectiveNetworkpharmacologyserotonin2AinhibitorexploremechanismResults:encapsulation95±1drugloading11±0averageuptake94%improvedtimemeanarterialpressureserumlevelinflammatorycytokinesprotectedliverkidneyfunctionsvivoincreasedvaluetransmembraneresistanceTEERreactiveoxygenspeciesvitroConclusion:canprotectinhibitingup-regulatingParthenolideImprovesBarrierFunctionSepsisInhibitingApoptosisviapermeability

Similar Articles

Cited By (7)