Modeling and multi-objective optimal control of reaction-diffusion COVID-19 system due to vaccination and patient isolation.

Yunbo Tu, Tasawar Hayat, Aatef Hobiny, Xinzhu Meng
Author Information
  1. Yunbo Tu: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, PR China.
  2. Tasawar Hayat: Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
  3. Aatef Hobiny: Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
  4. Xinzhu Meng: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, PR China.

Abstract

In this paper, a reaction-diffusion COVID-19 model is proposed to explore how vaccination-isolation strategies affect the development of the epidemic. First, the basic dynamical properties of the system are explored. Then, the system's asymptotic distributions of endemic equilibrium under different conditions are studied. Further, the global sensitivity analysis of is implemented with the aim of determining the sensitivity for these parameters. In addition, the optimal vaccination-isolation strategy based on the optimal path is proposed. Meantime, social cost , social benefit , threshold three objective optimization problem based on vaccination-isolation strategy is explored, and the maximum social cost and maximum social benefit are obtained. Finally, the instance prediction of the Lhasa epidemic in China on August 7, 2022, is made by using the piecewise infection rates , , and some key indicators are obtained as follows: (1) The basic reproduction numbers of each stage in Lhasa, China are and ; (2) The daily new cases of this epidemic will peak at 43 on the 20th day (August 26, 2022); (3) The cumulative cases in Lhasa, China will reach about 640 and be cleared about the 80th day (October 28, 2022). Our research will contribute to winning the war on epidemic prevention and control.

Keywords

References

  1. J Med Internet Res. 2020 Nov 13;22(11):e21372 [PMID: 33108317]
  2. Lancet. 2021 Jan 9;397(10269):99-111 [PMID: 33306989]
  3. Emerg Infect Dis. 2016 Sep;22(9):1644-6 [PMID: 27532887]
  4. NPJ Vaccines. 2021 Aug 11;6(1):99 [PMID: 34381059]
  5. Lancet Infect Dis. 2020 Jul;20(7):773 [PMID: 32171390]
  6. Vaccine. 2022 Feb 16;40(8):1074-1081 [PMID: 35090777]
  7. Science. 2020 May 1;368(6490):489-493 [PMID: 32179701]
  8. Lancet. 2021 Feb 20;397(10275):671-681 [PMID: 33545094]
  9. Laryngoscope. 2020 Jul;130(7):1787 [PMID: 32237238]
  10. Ann Med Surg (Lond). 2020 Jun 14;56:38-42 [PMID: 32562476]
  11. Epidemics. 2011 Mar;3(1):32-7 [PMID: 21420657]
  12. Sci Rep. 2020 Oct 29;10(1):18543 [PMID: 33122753]
  13. PLoS Negl Trop Dis. 2018 Sep 12;12(9):e0006762 [PMID: 30208032]
  14. Am J Agric Econ. 2021 Oct;103(5):1595-1611 [PMID: 33821008]
  15. Science. 2021 Feb 19;371(6531):850-854 [PMID: 33495308]
  16. J Gen Intern Med. 2020 May;35(5):1545-1549 [PMID: 32133578]
  17. Curr Opin Infect Dis. 2015 Aug;28(4):349-61 [PMID: 26098498]
  18. Nature. 2020 Jun;582(7812):389-394 [PMID: 32349120]
  19. Vaccines (Basel). 2021 Dec 31;10(1): [PMID: 35062719]
  20. J Franklin Inst. 2022 Nov;359(17):10058-10097 [PMID: 36277236]
  21. Lancet. 2020 Mar 7;395(10226):764-766 [PMID: 32105609]
  22. Infect Dis Model. 2020 Apr 28;5:309-315 [PMID: 32346663]
  23. Science. 2022 May 6;376(6593):eabn4947 [PMID: 35289632]
  24. Clin Microbiol Rev. 2020 Jun 24;33(4): [PMID: 32580969]
  25. N Engl J Med. 2021 Feb 4;384(5):403-416 [PMID: 33378609]
  26. J Theor Biol. 2008 Sep 7;254(1):178-96 [PMID: 18572196]
  27. Chaos Solitons Fractals. 2020 Jul;136:109889 [PMID: 32406395]
  28. Cell. 2020 Aug 20;182(4):794-795 [PMID: 32697970]
  29. Med Hypotheses. 2007;68(2):442-5 [PMID: 17011139]
  30. Bull Math Biol. 2013 Jan;75(1):1-23 [PMID: 23292360]

Word Cloud

Created with Highcharts 10.0.0epidemicsocialCOVID-19vaccination-isolationsystemoptimalstrategyLhasaChina2022willreaction-diffusionproposedbasicexploredsensitivitybasedcostbenefitoptimizationmaximumobtainedpredictionAugustinfectioncasesdaycontrolpapermodelexplorestrategiesaffectdevelopmentFirstdynamicalpropertiessystem'sasymptoticdistributionsendemicequilibriumdifferentconditionsstudiedglobalanalysisimplementedaimdeterminingparametersadditionpathMeantimethresholdthreeobjectiveproblemFinallyinstance7madeusingpiecewiserateskeyindicatorsfollows:1reproductionnumbersstage2dailynewpeak4320th263cumulativereach640cleared80thOctober28researchcontributewinningwarpreventionModelingmulti-objectiveduevaccinationpatientisolationInstanceMulti-objectivePiecewiserateReaction-diffusionVaccination-isolation

Similar Articles

Cited By