Voltage-Dependent FTIR and 2D Infrared Spectroscopies within the Electric Double Layer Using a Plasmonic and Conductive Electrode.

Nan Yang, Matthew J Ryan, Minjung Son, Andraž Mavrič, Martin T Zanni
Author Information
  1. Nan Yang: Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States. ORCID
  2. Matthew J Ryan: Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States. ORCID
  3. Minjung Son: Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States. ORCID
  4. Andraž Mavrič: University of Nova Gorica, Materials Research Laboratory, Vipavska 13, SI-5000 Nova Gorica, Slovenia. ORCID
  5. Martin T Zanni: Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States. ORCID

Abstract

Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10-20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3-5 nm AlO, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages.

References

  1. Chem Rev. 2017 Aug 23;117(16):10623-10664 [PMID: 28830147]
  2. Biochim Biophys Acta. 2013 Oct;1828(10):2283-93 [PMID: 23816441]
  3. Science. 2012 Apr 13;336(6078):229-33 [PMID: 22499946]
  4. Nature. 2011 Jun 08;474(7350):192-5 [PMID: 21654801]
  5. Nat Commun. 2019 Nov 26;10(1):5366 [PMID: 31772184]
  6. J Phys Chem Lett. 2018 Mar 15;9(6):1254-1259 [PMID: 29474082]
  7. Nat Rev Chem. 2021 Jul;5(7):466-485 [PMID: 37118441]
  8. J Phys Chem Lett. 2017 Jul 20;8(14):3341-3346 [PMID: 28677974]
  9. Phys Chem Chem Phys. 2016 Jun 28;18(24):16088-93 [PMID: 27265518]
  10. Chem Soc Rev. 2010 May;39(5):1805-34 [PMID: 20419220]
  11. Opt Express. 2020 Oct 26;28(22):33584-33602 [PMID: 33115018]
  12. J Phys Chem Lett. 2015 Jan 2;6(1):1-5 [PMID: 26263083]
  13. J Phys Chem B. 2020 Feb 20;124(7):1311-1321 [PMID: 31985221]
  14. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  15. J Am Chem Soc. 2021 Jul 21;143(28):10778-10792 [PMID: 34253024]
  16. Anal Chem. 2017 Nov 7;89(21):11818-11824 [PMID: 29019249]
  17. Science. 2014 Dec 19;346(6216):1510-4 [PMID: 25525245]
  18. J Med Chem. 2015 Sep 24;58(18):7093-118 [PMID: 25927480]
  19. Acc Chem Res. 2008 Jun;41(6):721-9 [PMID: 18507404]
  20. Light Sci Appl. 2021 Aug 4;10(1):161 [PMID: 34349103]
  21. J Am Chem Soc. 2022 May 4;144(17):7562-7567 [PMID: 35467853]
  22. ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33678-33683 [PMID: 30187745]
  23. J Phys Chem Lett. 2020 Aug 6;11(15):6185-6190 [PMID: 32659094]
  24. J Chem Theory Comput. 2014 May 13;10(5):2091-102 [PMID: 26580536]
  25. Nature. 2002 Sep 5;419(6902):35-42 [PMID: 12214225]
  26. Nature. 2021 Jun;594(7861):62-65 [PMID: 34079138]
  27. Nat Commun. 2020 Oct 22;11(1):5344 [PMID: 33093482]
  28. J Phys Chem B. 2008 Mar 20;112(11):3277-82 [PMID: 18293960]
  29. Nature. 2021 Dec;600(7887):81-85 [PMID: 34853456]

Grants

  1. R01 GM135936/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0layerinfraredelectricplasmonicenhancementsurfaceappliednmfieldstransparentelectrodeFTIRvoltagemonolayerdesignmicroscopynewusingvoltage-dependentstrengthStrongexistdoublechargedsurfacesimpactmolecularstructureschemistryinterfacesdevelopedsufficientmeasuretwo-dimensionalspectrasubmonolayercoveragescandeviceconsistssubstrate10-20conductiveindiumtinoxideITOelectricallyresistive3-5AlO3nonconductivegoldmaterialsthicknessessetmaximizenumberdensitymoleculeselectricalconductivityminimizingbackgroundsignalsavoidingFanolineshapedistortionsoptimizediterativelycharacterizingmaterialroughnessthicknessatomicforceelectronmonitoringplasmonresonancespectroscopyrobustrepeatedfabricationtestednitrilefunctionalgroups4-mercaptobenzonitrilewellCOCCstretchingmodes4-mercaptobenzoicacidmethylesterStarkshiftobservedmonolayersalsoobservetransitiondipoleCNmodescaleslinearlyprovidingsecondwaymeasuringfieldanticipatecellwillenablemanyexperimentsvoltagesVoltage-Dependent2DInfraredSpectroscopieswithinElectricDoubleLayerUsingPlasmonicConductiveElectrode

Similar Articles

Cited By