Subspecies-level genome comparison of Lactobacillus delbrueckii.

Min-Gyung Baek, Kwan Woo Kim, Hana Yi
Author Information
  1. Min-Gyung Baek: Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea.
  2. Kwan Woo Kim: Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea.
  3. Hana Yi: Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea. hanayi@korea.ac.kr.

Abstract

Lactobacillus delbrueckii comprises six subspecies, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. jakobsenii, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. sunkii, and L. delbrueckii subsp. indicus. We investigated the evolution of the six subspecies of L. delbrueckii using comparative genomics. While the defining feature of the species was the gene number increment driven by mobile elements and gene fragmentation, the repertoire of subspecies-specific gene gains and losses differed among the six subspecies. The horizontal gene transfer analyses indicated that frequent gene transfers between different subspecies had occurred when the six subspecies first diverged from the common ancestor, but recent gene exchange was confined to a subspecies implying independent evolution of the six subspecies. The subspecies bulgaricus is a homogeneous group that diverged from the other subspecies a long time ago and underwent convergent evolution. The subspecies lactis, jakobsenii, delbrueckii, and sunkii were more closely related to each other than to other subspecies. The four subspecies commonly show increasing genetic variability with increasing genome size. However, the four subspecies were distinguished by specific gene contents. The subspecies indicus forms a branch distant from the other subspecies and shows an independent evolutionary trend. These results could explain the differences in the habitat and nutritional requirements of the subspecies of L. delbrueckii.

References

  1. Mol Biol Evol. 2000 Apr;17(4):540-52 [PMID: 10742046]
  2. Int J Syst Evol Microbiol. 2016 Feb;66(2):1100-1103 [PMID: 26585518]
  3. Int J Syst Evol Microbiol. 2012 Nov;62(Pt 11):2643-2649 [PMID: 22199209]
  4. BMC Bioinformatics. 2003 Sep 11;4:41 [PMID: 12969510]
  5. Bioinformatics. 2012 Jan 15;28(2):279-81 [PMID: 22080468]
  6. Int J Syst Evol Microbiol. 2013 Oct;63(Pt 10):3720-3726 [PMID: 23645015]
  7. Microbiome. 2019 Mar 26;7(1):48 [PMID: 30914068]
  8. Int J Syst Evol Microbiol. 2020 Apr;70(4):2782-2858 [PMID: 32293557]
  9. BMC Genomics. 2014 May 28;15:407 [PMID: 24884896]
  10. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  11. BMC Microbiol. 2009 Mar 05;9:50 [PMID: 19265535]
  12. Annu Rev Genet. 2004;38:771-92 [PMID: 15568993]
  13. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91 [PMID: 16381842]
  14. Bioinformatics. 2005 May 1;21(9):2104-5 [PMID: 15647292]
  15. BMC Evol Biol. 2008 Jan 24;8:22 [PMID: 18218099]
  16. BMC Bioinformatics. 2007 Nov 22;8:460 [PMID: 18034891]
  17. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  18. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  19. Mol Phylogenet Evol. 2010 Sep;56(3):1115-8 [PMID: 20416383]
  20. Syst Appl Microbiol. 1983;4(4):552-7 [PMID: 23194812]
  21. Mol Biol Evol. 2003 Jan;20(1):93-104 [PMID: 12519911]
  22. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  23. Int J Syst Evol Microbiol. 2005 Jan;55(Pt 1):401-404 [PMID: 15653908]
  24. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  25. Microbiology (Reading). 2011 Mar;157(Pt 3):727-738 [PMID: 21178164]
  26. Bioinformatics. 2014 May 1;30(9):1297-9 [PMID: 24420766]
  27. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  28. Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9274-9 [PMID: 16754859]
  29. Gut Microbes. 2020 Nov 9;12(1):1-19 [PMID: 32985923]

MeSH Term

Lactobacillus delbrueckii
Genome, Bacterial
Gene Transfer, Horizontal
Biological Evolution

Word Cloud

Created with Highcharts 10.0.0subspeciesdelbrueckiiLgenesubspsixevolutionLactobacillusbulgaricuslactisjakobseniisunkiiindicusdivergedindependentfourincreasinggenomecomprisesinvestigatedusingcomparativegenomicsdefiningfeaturespeciesnumberincrementdrivenmobileelementsfragmentationrepertoiresubspecies-specificgainslossesdifferedamonghorizontaltransferanalysesindicatedfrequenttransfersdifferentoccurredfirstcommonancestorrecentexchangeconfinedimplyinghomogeneousgrouplongtimeagounderwentconvergentcloselyrelatedcommonlyshowgeneticvariabilitysizeHoweverdistinguishedspecificcontentsformsbranchdistantshowsevolutionarytrendresultsexplaindifferenceshabitatnutritionalrequirementsSubspecies-levelcomparison

Similar Articles

Cited By