Hypobaric hypoxia induced renal injury in rats: Prophylactic amelioration by quercetin supplementation.

Vaishnavi Rathi, Isha Tiwari, Ritu Kulshreshtha, Sarada S K Sagi
Author Information
  1. Vaishnavi Rathi: Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India.
  2. Isha Tiwari: Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India.
  3. Ritu Kulshreshtha: Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India. ORCID
  4. Sarada S K Sagi: Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India. ORCID

Abstract

The present study aims at assessing the effect of hypobaric hypoxia induced renal damage and associated renal functions in male SD rats. Further, this study was extended to explore the protective efficacy of quercetin in ameliorating the functional impairment in kidneys of rats under hypobaric hypoxia. Rats were exposed to 7620m (25000 ft.) at 25°C ±2 in a simulated hypobaric hypoxia chamber for different time durations (0h,1h, 3h, 6h, 12h, 24h and 48h) in order to optimize the time at which maximum renal damage would occur. The rats were exposed to hypoxia for 12h duration was considered as the optimum time, due to significant increase in oxidative stress (ROS, MDA) and renal metabolites (creatinine, BUN and uric acid) with remarkable reduction (p<0.001) in antioxidants (GSH) in plasma, as compared to other tested durations. Moreover, these findings were in support with the histopathology analysis of renal tissues. For optimum quercetin dose selection, the rats were administered with different doses of quercetin (25mg, 50mg, 100mg and 200mg/Kg BW) for 12h at 7620 m, 25°C ±2, 1h prior to hypoxia exposure. Quercetin 50mg/kg BW was considered as the optimum dose at which significant (p<0.001) reduction in oxidative stress levels followed by reduction in creatinine and BUN levels were obtained in plasma of the rats compared to hypoxia control rats. Quercetin prophylaxis (50mg/kg BW) stabilized the HIF-1α protein expression followed by reduced VEGF protein expression along with reduced levels of LDH (p<0.001) in the kidneys of rats compared to hypoxia control. Histopathological observations further substantiated these findings in reducing the renal tissue injury. The study findings revealed that, quercetin prophylaxis abrogates the possibility of hypobaric hypoxia induced renal injury by reducing the oxidative stress in rats.

References

  1. Mol Pharmacol. 2004 Apr;65(4):851-9 [PMID: 15044614]
  2. J Biol Chem. 1996 Dec 13;271(50):32253-9 [PMID: 8943284]
  3. J Pharmacol Exp Ther. 1983 Dec;227(3):749-54 [PMID: 6655568]
  4. Mol Cell. 2008 May 23;30(4):393-402 [PMID: 18498744]
  5. Kidney Int. 2004 Jun;65(6):2003-17 [PMID: 15149314]
  6. Yale J Biol Med. 2007 Jun;80(2):51-60 [PMID: 18160990]
  7. Physiology (Bethesda). 2004 Aug;19:176-82 [PMID: 15304631]
  8. Kidney Int. 2011 Feb;79(3):300-10 [PMID: 20881940]
  9. Chemistry. 2014 Nov 10;20(46):14928-45 [PMID: 25318456]
  10. Saudi Med J. 2012 Nov;33(11):1169-76 [PMID: 23147872]
  11. PLoS One. 2015 Mar 05;10(3):e0118730 [PMID: 25742500]
  12. Bioengineered. 2021 Dec;12(1):6538-6558 [PMID: 34528858]
  13. JAMA. 1998 Dec 9;280(22):1920-5 [PMID: 9851477]
  14. Biochem Pharmacol. 2010 Jun 1;79(11):1600-9 [PMID: 20153296]
  15. J Appl Physiol (1985). 2002 May;92(5):1911-22 [PMID: 11960941]
  16. Clin Chem. 1988 Dec;34(12):2433-8 [PMID: 3197281]
  17. Oxid Med Cell Longev. 2021 Mar 29;2021:5529913 [PMID: 33859776]
  18. Anal Biochem. 1983 Oct 1;134(1):111-6 [PMID: 6660480]
  19. Free Radic Biol Med. 2002 Aug 1;33(3):409-22 [PMID: 12126763]
  20. PLoS One. 2019 Jun 28;14(6):e0219075 [PMID: 31251771]
  21. Bio Protoc. 2019 Jun 20;9(12):e3263 [PMID: 33654783]
  22. Mutat Res. 2005 Apr 4;582(1-2):155-62 [PMID: 15781220]
  23. Biochim Biophys Acta. 2012 Oct;1820(10):1693-703 [PMID: 22728154]
  24. Physiol Int. 2018 Sep 1;105(3):233-246 [PMID: 30282485]
  25. Physiol Rev. 2012 Jul;92(3):967-1003 [PMID: 22811423]
  26. PLoS One. 2018 Jul 13;13(7):e0195701 [PMID: 30005088]
  27. Sci STKE. 2007 Oct 09;2007(407):cm8 [PMID: 17925579]
  28. Front Physiol. 2017 Apr 11;8:211 [PMID: 28443030]
  29. Mol Cell Biol. 1986 Jul;6(7):2571-5 [PMID: 3466025]
  30. Nutrients. 2020 Oct 22;12(11): [PMID: 33105547]
  31. Food Chem Toxicol. 1995 Dec;33(12):1061-80 [PMID: 8847003]
  32. Am J Transl Res. 2019 Aug 15;11(8):4683-4695 [PMID: 31497191]
  33. Biochem J. 2003 May 15;372(Pt 1):173-81 [PMID: 12578560]
  34. Neural Regen Res. 2017 Feb;12(2):220-227 [PMID: 28400803]
  35. J Am Soc Nephrol. 2013 Mar;24(4):537-41 [PMID: 23334390]
  36. Indian J Exp Biol. 2002 Mar;40(3):352-4 [PMID: 12635710]
  37. Free Radic Biol Med. 2017 Oct;111:316-327 [PMID: 28456642]
  38. Dose Response. 2020 Aug 28;18(3):1559325820949797 [PMID: 32922227]
  39. Free Radic Biol Med. 2012 Aug 15;53(4):659-68 [PMID: 22743108]
  40. Chem Biol Interact. 2012 Jan 25;195(2):154-64 [PMID: 22197970]
  41. Am J Physiol Renal Physiol. 2020 Dec 1;319(6):F1081-F1089 [PMID: 32996319]
  42. Cardiovasc Res. 2006 Sep 1;71(4):642-51 [PMID: 16780822]
  43. High Alt Med Biol. 2013 Jun;14(2):183-5 [PMID: 23795741]
  44. Med Sci Monit. 2018 Jul 10;24:4760-4766 [PMID: 29987270]
  45. J Pharm Pharmacol. 2003 Jan;55(1):131-42 [PMID: 12625877]
  46. Nephrol Dial Transplant. 2012 Dec;27 Suppl 4:iv11-6 [PMID: 23258804]
  47. Oxid Med Cell Longev. 2019 Oct 13;2019:5080843 [PMID: 31737171]
  48. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4748-53 [PMID: 10758161]
  49. Anal Biochem. 1969 Mar;27(3):502-22 [PMID: 4388022]
  50. J Neuroimmune Pharmacol. 2014 Mar;9(2):142-60 [PMID: 24610033]
  51. Molecules. 2019 Mar 21;24(6): [PMID: 30901869]
  52. Neurotoxicology. 2020 Mar;77:193-204 [PMID: 32007490]
  53. Nutr Rev. 2010 Jul;68(7):418-28 [PMID: 20591109]
  54. Nephrol Dial Transplant. 2014 Mar;29(3):497-506 [PMID: 23525530]
  55. PLoS One. 2013 Jun 18;8(6):e66776 [PMID: 23825563]
  56. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  57. J Am Soc Nephrol. 2011 Nov;22(11):1963-8 [PMID: 21566053]
  58. Indian J Exp Biol. 2005 Jan;43(1):61-7 [PMID: 15691067]

MeSH Term

Rats
Male
Animals
Quercetin
Rats, Sprague-Dawley
Creatinine
Antioxidants
Oxidative Stress
Kidney
Hypoxia
Dietary Supplements

Chemicals

Quercetin
Creatinine
Antioxidants

Word Cloud

Created with Highcharts 10.0.0hypoxiarenalratsquercetinhypobaricstudyinducedtime12hoptimumoxidativestressreductionp<0001comparedfindingsBWlevelsinjurydamagekidneysexposed25°C±2differentdurations1hconsideredsignificantcreatinineBUNplasmadoseQuercetin50mg/kgfollowedcontrolprophylaxisproteinexpressionreducedreducingpresentaimsassessingeffectassociatedfunctionsmaleSDextendedexploreprotectiveefficacyamelioratingfunctionalimpairmentRats7620m25000ftsimulatedchamber0h3h6h24h48horderoptimizemaximumoccurdurationdueincreaseROSMDAmetabolitesuricacidremarkableantioxidantsGSHtestedMoreoversupporthistopathologyanalysistissuesselectionadministereddoses25mg50mg100mg200mg/Kg7620mpriorexposureobtainedstabilizedHIF-1αVEGFalongLDHHistopathologicalobservationssubstantiatedtissuerevealedabrogatespossibilityHypobaricrats:Prophylacticameliorationsupplementation

Similar Articles

Cited By