Mid-infrared cross-comb spectroscopy.

Mingchen Liu, Robert M Gray, Luis Costa, Charles R Markus, Arkadev Roy, Alireza Marandi
Author Information
  1. Mingchen Liu: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. ORCID
  2. Robert M Gray: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
  3. Luis Costa: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. ORCID
  4. Charles R Markus: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
  5. Arkadev Roy: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. ORCID
  6. Alireza Marandi: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. marandi@caltech.edu. ORCID

Abstract

Dual-comb spectroscopy has been proven beneficial in molecular characterization but remains challenging in the mid-infrared region due to difficulties in sources and efficient photodetection. Here we introduce cross-comb spectroscopy, in which a mid-infrared comb is upconverted via sum-frequency generation with a near-infrared comb of a shifted repetition rate and then interfered with a spectral extension of the near-infrared comb. We measure CO absorption around 4.25�����m with a 1-��m photodetector, exhibiting a 233-cm instantaneous bandwidth, 28000 comb lines, a single-shot signal-to-noise ratio of 167 and a figure of merit of 2.4 �� 10 Hz. We show that cross-comb spectroscopy can have superior signal-to-noise ratio, sensitivity, dynamic range, and detection efficiency compared to other dual-comb-based methods and mitigate the limits of the excitation background and detector saturation. This approach offers an adaptable and powerful spectroscopic method outside the well-developed near-IR region and opens new avenues to high-performance frequency-comb-based sensing with wavelength flexibility.

References

  1. Opt Lett. 2014 Apr 15;39(8):2435-8 [PMID: 24979012]
  2. Nat Commun. 2014 Oct 13;5:5192 [PMID: 25307936]
  3. Opt Express. 2010 Apr 12;18(8):7929-45 [PMID: 20588636]
  4. Appl Phys B. 2018;124(7):128 [PMID: 30996528]
  5. Opt Express. 2012 Sep 24;20(20):21932-9 [PMID: 23037343]
  6. Opt Lett. 2021 Feb 15;46(4):709-712 [PMID: 33577495]
  7. Phys Rev Lett. 2008 Jan 11;100(1):013902 [PMID: 18232764]
  8. Opt Express. 2019 Feb 4;27(3):2432-2443 [PMID: 30732280]
  9. Opt Lett. 2009 May 1;34(9):1330-2 [PMID: 19412262]
  10. Opt Express. 2010 Oct 25;18(22):23358-70 [PMID: 21164677]
  11. Sci Adv. 2019 Jun 07;5(6):eaaw8794 [PMID: 31187063]
  12. Phys Rev Lett. 1991 Apr 8;66(14):1834-1837 [PMID: 10043322]
  13. Nat Commun. 2023 Oct 17;14(1):6549 [PMID: 37848411]
  14. Nature. 2020 Jan;577(7788):52-59 [PMID: 31894146]
  15. Opt Express. 2009 Sep 28;17(20):17324-37 [PMID: 19907518]
  16. Nat Commun. 2014 Feb 27;5:3375 [PMID: 24572636]
  17. Opt Lett. 2019 Mar 1;44(5):1222-1225 [PMID: 30821753]
  18. Opt Lett. 2017 May 1;42(9):1748-1751 [PMID: 28454151]
  19. Sci Rep. 2014 Oct 20;4:6670 [PMID: 25327294]
  20. Rev Sci Instrum. 2014 Jan;85(1):013114 [PMID: 24517752]
  21. Anal Chem. 2020 Jun 2;92(11):7508-7514 [PMID: 32352273]
  22. Opt Lett. 2019 Mar 15;44(6):1492-1495 [PMID: 30874684]
  23. Optica. 2016;3(4): [PMID: 34131580]
  24. Science. 2015 Oct 23;350(6259):420-3 [PMID: 26429882]
  25. Opt Lett. 2010 May 1;35(9):1395-7 [PMID: 20436581]
  26. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3454-3459 [PMID: 30755528]
  27. Opt Express. 2018 Jun 25;26(13):16813-16823 [PMID: 30119502]

Grants

  1. FA9550-20-1-0040/United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  2. 1846273/National Science Foundation (NSF)

MeSH Term

Spectrophotometry, Infrared
Signal-To-Noise Ratio

Word Cloud

Created with Highcharts 10.0.0spectroscopycombcross-combmid-infraredregionnear-infrared4signal-to-noiseratioDual-combprovenbeneficialmolecularcharacterizationremainschallengingduedifficultiessourcesefficientphotodetectionintroduceupconvertedviasum-frequencygenerationshiftedrepetitionrateinterferedspectralextensionmeasureCOabsorptionaround25�����m1-��mphotodetectorexhibiting233-cminstantaneousbandwidth28000linessingle-shot167figuremerit2��10Hzshowcansuperiorsensitivitydynamicrangedetectionefficiencycompareddual-comb-basedmethodsmitigatelimitsexcitationbackgrounddetectorsaturationapproachoffersadaptablepowerfulspectroscopicmethodoutsidewell-developednear-IRopensnewavenueshigh-performancefrequency-comb-basedsensingwavelengthflexibilityMid-infrared

Similar Articles

Cited By