Environmental changes associated with drying climate are expected to affect functional groups of pro- and microeukaryotes differently in temporary saline waters.

Zsuzsanna Márton, Beáta Szabó, Csaba F Vad, Károly Pálffy, Zsófia Horváth
Author Information
  1. Zsuzsanna Márton: Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary. marton.zsuzsanna@ecolres.hu.
  2. Beáta Szabó: Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
  3. Csaba F Vad: Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
  4. Károly Pálffy: Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
  5. Zsófia Horváth: Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.

Abstract

Temporary ponds are among the most sensitive aquatic habitats to climate change. Their microbial communities have crucial roles in food webs and biogeochemical cycling, yet how their communities are assembled along environmental gradients is still understudied. This study aimed to reveal the environmental drivers of diversity (OTU-based richness, evenness, and phylogenetic diversity) and community composition from a network of saline temporary ponds, soda pans, in two consecutive spring seasons characterized by contrasting weather conditions. We used DNA-based molecular methods to investigate microbial community composition. We tested the effect of environmental variables on the diversity of prokaryotic (Bacteria, Cyanobacteria) and microeukaryotic functional groups (ciliates, heterotrophic flagellates and nanoflagellates, fungi, phytoplankton) within and across the years. Conductivity and the concentration of total suspended solids and phosphorus were the most important environmental variables affecting diversity patterns in all functional groups. Environmental conditions were harsher and they also had a stronger impact on community composition in the dry spring. Our results imply that these conditions, which are becoming more frequent with climate change, have a negative effect on microbial diversity in temporary saline ponds. This eventually might translate into community-level shifts across trophic groups with changing local conditions with implications for ecosystem functioning.

References

  1. Trends Ecol Evol. 2022 May;37(5):440-453 [PMID: 35058082]
  2. Front Microbiol. 2017 Mar 09;8:351 [PMID: 28337180]
  3. Sci Total Environ. 2020 Oct 20;740:140029 [PMID: 32559535]
  4. Curr Opin Biotechnol. 2006 Jun;17(3):256-61 [PMID: 16704930]
  5. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20404-9 [PMID: 18077371]
  6. ISME J. 2022 Apr;16(4):1086-1094 [PMID: 34853477]
  7. FEMS Microbiol Ecol. 2011 Jan;75(1):48-62 [PMID: 21062327]
  8. Glob Chang Biol. 2021 Dec;27(23):6263-6279 [PMID: 34534383]
  9. Am Nat. 2019 Aug;194(2):E41-E51 [PMID: 31318279]
  10. Protist. 1998 Sep;149(3):229-44 [PMID: 23194636]
  11. Nucleic Acids Res. 2013 Jan;41(Database issue):D597-604 [PMID: 23193267]
  12. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  13. Protist. 2016 Nov;167(5):411-424 [PMID: 27541705]
  14. Environ Microbiol. 2016 May;18(5):1403-14 [PMID: 26271760]
  15. PLoS One. 2014 Feb 07;9(2):e87624 [PMID: 24516555]
  16. Environ Microbiol. 2010 Jan;12(1):118-23 [PMID: 19725865]
  17. Extremophiles. 2017 May;21(3):639-649 [PMID: 28389755]
  18. Front Microbiol. 2016 Jun 21;7:976 [PMID: 27446017]
  19. Eur J Protistol. 2006 Sep;42(3):191-200 [PMID: 17070763]
  20. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  21. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  22. Bioinformatics. 2010 Jun 1;26(11):1463-4 [PMID: 20395285]
  23. Microbiome. 2021 Jun 3;9(1):128 [PMID: 34082826]
  24. Extremophiles. 2014 Sep;18(5):791-809 [PMID: 25156418]
  25. Sci Rep. 2020 Nov 26;10(1):20686 [PMID: 33244085]
  26. Nature. 2016 Dec 15;540(7633):418-422 [PMID: 27926733]
  27. Imeta. 2022 Aug 01;1(3):e43 [PMID: 38868715]
  28. Ecol Lett. 2019 Jun;22(6):1019-1027 [PMID: 30932319]
  29. Front Microbiol. 2011 Apr 25;2:80 [PMID: 21747797]
  30. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  31. Innovation (Camb). 2020 Aug 01;1(2):100030 [PMID: 34557708]
  32. Nature. 2005 Aug 25;436(7054):1157-60 [PMID: 16121181]
  33. Sci Total Environ. 2011 Sep 1;409(19):3919-33 [PMID: 21752428]
  34. Environ Microbiol. 2021 Feb;23(2):1020-1037 [PMID: 33073448]
  35. Mol Ecol. 2016 Nov;25(21):5585-5602 [PMID: 27662431]
  36. PLoS Genet. 2010 Jan 15;6(1):e1000808 [PMID: 20090831]
  37. Environ Microbiol. 2002 Jun;4(6):349-60 [PMID: 12071980]
  38. mSphere. 2018 Sep 5;3(5): [PMID: 30185512]
  39. Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17430-4 [PMID: 17942690]
  40. Biol Futur. 2020 Dec;71(4):393-404 [PMID: 34554457]
  41. Limnologica. 2017 Jan;62:38-46 [PMID: 28572691]
  42. Sci Rep. 2020 Nov 16;10(1):19871 [PMID: 33199773]
  43. Extremophiles. 2014 Jan;18(1):111-9 [PMID: 24281914]

MeSH Term

Ecosystem
Phylogeny
Cyanobacteria
Food Chain
Saline Waters
Biodiversity

Word Cloud

Created with Highcharts 10.0.0diversityenvironmentalconditionsgroupspondsclimatemicrobialcommunitycompositionsalinetemporaryfunctionalchangecommunitiesspringeffectvariablesacrossEnvironmentalTemporaryamongsensitiveaquatichabitatscrucialrolesfoodwebsbiogeochemicalcyclingyetassembledalonggradientsstillunderstudiedstudyaimedrevealdriversOTU-basedrichnessevennessphylogeneticnetworksodapanstwoconsecutiveseasonscharacterizedcontrastingweatherusedDNA-basedmolecularmethodsinvestigatetestedprokaryoticBacteriaCyanobacteriamicroeukaryoticciliatesheterotrophicflagellatesnanoflagellatesfungiphytoplanktonwithinyearsConductivityconcentrationtotalsuspendedsolidsphosphorusimportantaffectingpatternsharsheralsostrongerimpactdryresultsimplybecomingfrequentnegativeeventuallymighttranslatecommunity-levelshiftstrophicchanginglocalimplicationsecosystemfunctioningchangesassociateddryingexpectedaffectpro-microeukaryotesdifferentlywaters

Similar Articles

Cited By