Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms.

Stephen T Abedon
Author Information
  1. Stephen T Abedon: Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA. ORCID

Abstract

As with antibiotics, we can differentiate various acquired mechanisms of bacteria-mediated inhibition of the action of bacterial viruses (phages or bacteriophages) into ones of tolerance vs. resistance. These also, respectively, may be distinguished as physiological insensitivities (or protections) vs. resistance mutations, phenotypic resistance vs. genotypic resistance, temporary vs. more permanent mechanisms, and ecologically vs. also near-term evolutionarily motivated functions. These phenomena can result from multiple distinct molecular mechanisms, many of which for bacterial tolerance of phages are associated with bacterial biofilms (as is also the case for the bacterial tolerance of antibiotics). The resulting inhibitions are relevant from an applied perspective because of their potential to thwart phage-based treatments of bacterial infections, i.e., phage therapies, as well as their potential to interfere more generally with approaches to the phage-based biological control of bacterial biofilms. In other words, given the generally low toxicity of properly chosen therapeutic phages, it is a combination of phage tolerance and phage resistance, as displayed by targeted bacteria, that seems to represent the greatest impediments to phage therapy's success. Here I explore general concepts of bacterial tolerance of vs. bacterial resistance to phages, particularly as they may be considered in association with bacterial biofilms.

Keywords

References

  1. Front Microbiol. 2021 Jun 17;12:658374 [PMID: 34220747]
  2. Pharmacotherapy. 2020 Feb;40(2):153-168 [PMID: 31872889]
  3. J Theor Biol. 2003 Oct 7;224(3):377-83 [PMID: 12941595]
  4. Biotechnol Bioeng. 1970 May;12(3):341-6 [PMID: 4920047]
  5. BMC Biotechnol. 2007 Feb 26;7:13 [PMID: 17324284]
  6. NPJ Biofilms Microbiomes. 2021 Mar 17;7(1):26 [PMID: 33731698]
  7. Phage (New Rochelle). 2021 Mar 1;2(1):16-25 [PMID: 36148442]
  8. Proc Biol Sci. 2022 Oct 12;289(1984):20221070 [PMID: 36196537]
  9. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12503-8 [PMID: 18719125]
  10. Evol Appl. 2018 Dec 22;12(3):498-507 [PMID: 30828370]
  11. Front Microbiol. 2018 Mar 27;9:592 [PMID: 29636749]
  12. Biophys J. 1992 Jun;61(6):1540-9 [PMID: 1617137]
  13. J Bacteriol. 2006 Aug;188(16):5945-57 [PMID: 16885463]
  14. Environ Microbiol. 2022 Sep;24(9):4285-4298 [PMID: 35384225]
  15. Commun Biol. 2019 Nov 4;2:405 [PMID: 31701033]
  16. Mol Gen Genet. 1973 Aug 10;124(2):97-106 [PMID: 4201042]
  17. Pharmaceuticals (Basel). 2021 Oct 03;14(10): [PMID: 34681243]
  18. Arch Immunol Ther Exp (Warsz). 1987;35(5):569-83 [PMID: 3455647]
  19. Nature. 2020 Jan;577(7790):327-336 [PMID: 31942051]
  20. J Theor Biol. 1999 Oct 21;200(4):365-73 [PMID: 10525396]
  21. J Bacteriol. 2002 Apr;184(7):1888-94 [PMID: 11889095]
  22. Environ Microbiol. 2019 Jun;21(6):2095-2111 [PMID: 30888719]
  23. J Gen Microbiol. 1962 Apr;28:103-17 [PMID: 14473222]
  24. mBio. 2017 Jan 17;8(1): [PMID: 28096488]
  25. J Colloid Interface Sci. 2018 Aug 1;523:254-265 [PMID: 29626763]
  26. Methods Mol Biol. 2018;1681:41-47 [PMID: 29134585]
  27. J Bacteriol. 1954 Jun;67(6):635-9 [PMID: 13174489]
  28. J Antimicrob Chemother. 2008 May;61(5):1053-6 [PMID: 18256114]
  29. Viruses. 2022 Jan 11;14(1): [PMID: 35062325]
  30. ISME J. 2021 Apr;15(4):939-948 [PMID: 33219299]
  31. Clin Microbiol Rev. 2022 Dec 21;35(4):e0006222 [PMID: 36069758]
  32. mBio. 2013 Feb 19;4(1):e00362-12 [PMID: 23422409]
  33. Philos Trans A Math Phys Eng Sci. 2012 May 28;370(1967):2381-417 [PMID: 22509063]
  34. Appl Environ Microbiol. 2015 Jul;81(13):4489-97 [PMID: 25911474]
  35. Int J Antimicrob Agents. 2018 Dec;52(6):842-853 [PMID: 30236955]
  36. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):337-342 [PMID: 29259110]
  37. PLoS One. 2012;7(10):e47695 [PMID: 23110091]
  38. Biochemistry. 1964 Feb;3:215-23 [PMID: 14163944]
  39. Phage (New Rochelle). 2022 Mar 1;3(1):12-14 [PMID: 36161197]
  40. Transbound Emerg Dis. 2022 Jul;69(4):e435-e450 [PMID: 34514728]
  41. Biochem Biophys Res Commun. 1991 Jan 31;174(2):1009-14 [PMID: 1993042]
  42. J Bacteriol. 1954 Jul;68(1):36-42 [PMID: 13183895]
  43. FEMS Microbiol Lett. 2004 Dec 1;241(1):13-20 [PMID: 15556704]
  44. Expert Rev Anti Infect Ther. 2018 Jan;16(1):51-65 [PMID: 29235402]
  45. Appl Environ Microbiol. 2008 Apr;74(7):2135-43 [PMID: 18245240]
  46. J Bacteriol. 1950 Mar;59(3):329-47 [PMID: 15436402]
  47. Acta Pathol Microbiol Scand Suppl (1926). 1951;88:1-121 [PMID: 14846647]
  48. PLoS One. 2014 Apr 17;9(4):e94690 [PMID: 24743264]
  49. Annu Rev Virol. 2020 Sep 29;7(1):371-384 [PMID: 32559405]
  50. Sci Rep. 2016 Nov 28;6:37956 [PMID: 27892495]
  51. PLoS One. 2022 Apr 14;17(4):e0266891 [PMID: 35421196]
  52. Adv Virus Res. 2012;82:339-49 [PMID: 22420857]
  53. Adv Appl Microbiol. 2010;70:217-48 [PMID: 20359459]
  54. J Bacteriol. 1952 Jan;63(1):59-72 [PMID: 14927549]
  55. Virus Evol. 2022 Sep 15;8(2):veac086 [PMID: 36225237]
  56. Front Microbiol. 2020 Dec 14;11:583661 [PMID: 33381088]
  57. Antibiotics (Basel). 2019 Oct 11;8(4): [PMID: 31614449]
  58. Cell Host Microbe. 2019 Feb 13;25(2):184-194 [PMID: 30763533]
  59. Mol Biol Evol. 2022 Sep 1;39(9): [PMID: 35994371]
  60. BMC Microbiol. 2011 Dec 01;11:258 [PMID: 22133164]
  61. Microbiol Spectr. 2023 Feb 14;11(1):e0391122 [PMID: 36602321]
  62. Biotechnol Prog. 2012 Mar-Apr;28(2):319-26 [PMID: 22058083]
  63. Front Microbiol. 2016 Sep 08;7:1391 [PMID: 27660625]
  64. Front Microbiol. 2022 Feb 17;12:784949 [PMID: 35250902]
  65. Nat Microbiol. 2018 Jan;3(1):26-31 [PMID: 29085075]
  66. J Gen Physiol. 1940 May 20;23(5):631-42 [PMID: 19873179]
  67. Pharmaceuticals (Basel). 2015 Sep 09;8(3):525-58 [PMID: 26371010]
  68. Pharmaceutics. 2022 Jul 07;14(7): [PMID: 35890320]
  69. Biomed Mater. 2022 Feb 14;17(2): [PMID: 35105823]
  70. Nat Rev Microbiol. 2017 Aug;15(8):453-464 [PMID: 28529326]
  71. Microbiology (Reading). 1997 Jan;143 ( Pt 1):179-185 [PMID: 9025292]
  72. Trends Microbiol. 2016 Apr;24(4):249-256 [PMID: 26786863]
  73. Genetics. 1943 Nov;28(6):491-511 [PMID: 17247100]
  74. J Bacteriol. 2018 Jul 10;200(15): [PMID: 29661863]
  75. Curr Pharm Biotechnol. 2008 Aug;9(4):261-6 [PMID: 18691087]
  76. Phage (New Rochelle). 2022 Jun 1;3(2):98-111 [PMID: 36148139]
  77. Elife. 2017 Nov 01;6: [PMID: 29091031]
  78. PLoS One. 2009 Jul 16;4(7):e6289 [PMID: 19606212]
  79. Trends Microbiol. 2022 Jun;30(6):544-552 [PMID: 34872824]
  80. Viruses. 2012 May;4(5):663-87 [PMID: 22754643]
  81. Curr Opin Virol. 2022 Apr;53:101209 [PMID: 35240424]
  82. mSystems. 2020 Feb 4;5(1): [PMID: 32019835]
  83. Nat Rev Microbiol. 2023 Feb;21(2):70-86 [PMID: 36127518]
  84. J Basic Microbiol. 2021 Dec;61(12):1113-1123 [PMID: 34783039]
  85. Transl Res. 2020 Jun;220:153-166 [PMID: 32268129]
  86. ISME J. 2018 Feb;12(2):531-543 [PMID: 29125597]
  87. Nat Rev Microbiol. 2016 Apr;14(5):320-30 [PMID: 27080241]
  88. AIMS Microbiol. 2017 Mar 31;3(2):186-226 [PMID: 31294157]
  89. FEMS Microbiol Rev. 2017 May 1;41(3):276-301 [PMID: 28369412]
  90. Biophys J. 2017 Jun 20;112(12):2664-2671 [PMID: 28636922]
  91. Pathog Dis. 2019 Mar 1;77(2): [PMID: 30821815]
  92. Eur J Clin Microbiol Infect Dis. 2015 May;34(5):877-86 [PMID: 25630538]
  93. Curr Opin Microbiol. 2019 Oct;51:46-50 [PMID: 31226502]
  94. Open Biol. 2022 Jun;12(6):210379 [PMID: 35673854]
  95. J Gen Virol. 1969 Sep;5(2):171-82 [PMID: 4899804]
  96. Open Biol. 2021 Sep;11(9):210188 [PMID: 34520699]
  97. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12828-33 [PMID: 22807479]
  98. Antibiotics (Basel). 2021 Feb 10;10(2): [PMID: 33578658]
  99. J Virol. 1972 Jul;10(1):162-5 [PMID: 4557207]
  100. PLoS Biol. 2008 May 20;6(5):e120 [PMID: 18494559]
  101. Int Immunopharmacol. 2022 Sep;110:109071 [PMID: 35978521]
  102. J Clin Lab Anal. 2022 Jul;36(7):e24497 [PMID: 35708005]
  103. Front Microbiol. 2022 Aug 01;13:905343 [PMID: 35979493]
  104. FEMS Microbiol Rev. 2022 Feb 9;46(1): [PMID: 34558600]
  105. Microbiol Spectr. 2022 Oct 26;10(5):e0241922 [PMID: 36102643]
  106. Microbiology (Reading). 2019 Aug;165(8):834-841 [PMID: 30958259]
  107. Nat Rev Genet. 2020 Feb;21(2):119-131 [PMID: 31611667]
  108. Crit Rev Microbiol. 2022 May;48(3):283-302 [PMID: 34411498]
  109. Front Microbiol. 2022 May 10;13:892021 [PMID: 35620101]
  110. J Ind Microbiol. 1996 Jun;16(6):331-41 [PMID: 8987490]
  111. Appl Environ Microbiol. 2006 Jan;72(1):956-9 [PMID: 16391144]
  112. mBio. 2017 Apr 4;8(2): [PMID: 28377527]
  113. Microb Ecol. 2000 Aug;40(2):114-124 [PMID: 11029080]
  114. Front Microbiol. 2018 Sep 28;9:2348 [PMID: 30323804]
  115. Can J Microbiol. 1982 Nov;28(11):1277-80 [PMID: 6185190]
  116. Antibiotics (Basel). 2018 Jan 29;7(1): [PMID: 29382134]
  117. Curr Issues Mol Biol. 2021;40:81-164 [PMID: 32503951]
  118. Microbiol Mol Biol Rev. 2019 Oct 30;83(4): [PMID: 31666296]
  119. Appl Environ Microbiol. 1995 Apr;61(4):1520-6 [PMID: 7747969]
  120. J Gen Physiol. 1940 May 20;23(5):643-60 [PMID: 19873180]
  121. Front Cell Infect Microbiol. 2019 Feb 18;9:22 [PMID: 30834237]
  122. Folia Microbiol (Praha). 2022 Apr;67(2):193-201 [PMID: 35028881]
  123. PLoS Biol. 2021 Oct 12;19(10):e3001406 [PMID: 34637438]
  124. Biophys J. 2008 Jun;94(11):4525-36 [PMID: 18310238]
  125. Curr Pharm Biotechnol. 2010 Jan;11(1):28-47 [PMID: 20214606]
  126. mBio. 2015 Jun 16;6(3):e00627 [PMID: 26081633]
  127. Antibiotics (Basel). 2021 Dec 06;10(12): [PMID: 34943709]
  128. Antimicrob Agents Chemother. 2022 Jul 19;66(7):e0224721 [PMID: 35708333]
  129. Adv Drug Deliv Rev. 2019 May;145:18-39 [PMID: 31708017]
  130. FEMS Microbiol Rev. 2014 Sep;38(5):916-31 [PMID: 24617569]
  131. Curr Opin Virol. 2022 Apr;53:101201 [PMID: 35180532]
  132. Pharmaceuticals (Basel). 2022 Feb 22;15(3): [PMID: 35337066]
  133. Int Forum Allergy Rhinol. 2018 Mar;8(3):406-414 [PMID: 29240296]
  134. Pharmaceuticals (Basel). 2021 Nov 13;14(11): [PMID: 34832939]
  135. Biomacromolecules. 2019 Oct 14;20(10):3842-3854 [PMID: 31478651]
  136. Biofouling. 2004 Jun;20(3):133-8 [PMID: 15545062]
  137. Acta Biomed. 2020 Nov 09;91(13-S):e2020024 [PMID: 33170167]
  138. Nat Rev Microbiol. 2022 Oct;20(10):621-635 [PMID: 35115704]
  139. PLoS Biol. 2022 Dec 22;20(12):e3001913 [PMID: 36548227]
  140. J Virol. 1970 Aug;6(2):163-8 [PMID: 4925773]
  141. J Bacteriol. 1948 Jul;56(1):1-16 [PMID: 18863621]
  142. FEMS Microbiol Lett. 2016 Feb;363(3): [PMID: 26738755]
  143. Methods Mol Biol. 2009;501:175-202 [PMID: 19066822]
  144. Biofouling. 2021 Jul;37(6):689-709 [PMID: 34304662]
  145. Adv Appl Microbiol. 2011;77:1-40 [PMID: 22050820]
  146. Appl Environ Microbiol. 2005 Aug;71(8):4872-4 [PMID: 16085886]
  147. Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):131-135 [PMID: 27849583]
  148. Phage (New Rochelle). 2022 Jun 1;3(2):95-97 [PMID: 36157282]
  149. Viruses. 2020 Feb 20;12(2): [PMID: 32093349]
  150. Microbiol Spectr. 2022 Oct 26;10(5):e0207222 [PMID: 36129287]
  151. Biofouling. 2011 Oct;27(9):1017-32 [PMID: 22011093]
  152. Science. 2021 Oct 22;374(6566):488-492 [PMID: 34672730]
  153. Environ Res. 2021 Apr;195:110897 [PMID: 33617866]
  154. Cell Host Microbe. 2019 Jul 10;26(1):15-21 [PMID: 31295420]
  155. Front Microbiol. 2015 Apr 23;6:343 [PMID: 25954266]
  156. mSystems. 2020 Jun 23;5(3): [PMID: 32576653]
  157. Vet Microbiol. 2002 May 24;86(4):295-301 [PMID: 11955779]
  158. J Bacteriol. 1971 May;106(2):432-7 [PMID: 4929858]
  159. Antibiotics (Basel). 2020 Feb 03;9(2): [PMID: 32028684]
  160. J Bacteriol. 1965 Nov;90(5):1188-93 [PMID: 5321475]
  161. EMBO J. 2022 Feb 1;41(3):e109247 [PMID: 34878184]
  162. Appl Environ Microbiol. 1998 Oct;64(10):4035-9 [PMID: 9758837]
  163. FEMS Microbiol Lett. 2009 Sep;298(2):184-92 [PMID: 19645822]
  164. Can J Microbiol. 1997 Dec;43(12):1157-63 [PMID: 9476352]

Grants

  1. R01 AI169865/NIAID NIH HHS
  2. R21 AI156304/NIAID NIH HHS
  3. R01AI169865/NIH HHS
  4. R21AI156304/NIH HHS

Word Cloud

Created with Highcharts 10.0.0bacterialvsphageresistancetolerancephagesmechanismsalsobiofilmsPhageantibioticscanmaypotentialphage-basedgenerallydifferentiatevariousacquiredbacteria-mediatedinhibitionactionvirusesbacteriophagesonesrespectivelydistinguishedphysiologicalinsensitivitiesprotectionsmutationsphenotypicgenotypictemporarypermanentecologicallynear-termevolutionarilymotivatedfunctionsphenomenaresultmultipledistinctmolecularmanyassociatedcaseresultinginhibitionsrelevantappliedperspectivethwarttreatmentsinfectionsietherapieswellinterfereapproachesbiologicalcontrolwordsgivenlowtoxicityproperlychosentherapeuticcombinationdisplayedtargetedbacteriaseemsrepresentgreatestimpedimentstherapy'ssuccessexploregeneralconceptsparticularlyconsideredassociationEcologyEvolutionaryBiologyHinderingTherapy:ToleranceResistanceBacterialBiofilmsself-sacrificebacteriophagetherapybiocontrolbiofilmmatrixavoidancedelaynegation

Similar Articles

Cited By