Retinoic Acid and POU Genes in Developing Amphioxus: A Focus on Neural Development.

Matteo Bozzo, Deianira Bellitto, Andrea Amaroli, Sara Ferrando, Michael Schubert, Simona Candiani
Author Information
  1. Matteo Bozzo: Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy. ORCID
  2. Deianira Bellitto: Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy.
  3. Andrea Amaroli: Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy. ORCID
  4. Sara Ferrando: Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy. ORCID
  5. Michael Schubert: Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France. ORCID
  6. Simona Candiani: Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy. ORCID

Abstract

POU genes are a family of evolutionarily conserved transcription factors with key functions in cell type specification and neurogenesis. In vitro experiments have indicated that the expression of some POU genes is controlled by the intercellular signaling molecule retinoic acid (RA). In this work, we aimed to characterize the roles of RA signaling in the regulation of POU genes in vivo. To do so, we studied POU genes during the development of the cephalochordate amphioxus, an animal model crucial for understanding the evolutionary origins of vertebrates. The expression patterns of amphioxus POU genes were assessed at different developmental stages by chromogenic in situ hybridization and hybridization chain reaction. Expression was further assessed in embryos subjected to pharmacological manipulation of endogenous RA signaling activity. In addition to a detailed description of the effects of these treatments on amphioxus POU gene expression, our survey included the first description of and expression in amphioxus embryos. We found that , , , and expression are not affected by alterations of endogenous RA signaling levels. In contrast, our experiments indicated that and expression are regulated by RA signaling in the endoderm and the nerve cord, respectively. The effects of the treatments on expression in the nerve cord revealed that, in developing amphioxus, RA signaling plays a dual role by (1) providing anteroposterior patterning information to neural cells and (2) specifying neural cell types. This finding is coherent with a terminal selector function of for GABAergic neurons in amphioxus and represents the first description of RA-induced changes in POU gene expression in vivo.

Keywords

References

  1. Cell Mol Life Sci. 2018 Jul;75(13):2407-2429 [PMID: 29387904]
  2. PLoS One. 2016 Jul 15;11(7):e0158977 [PMID: 27420727]
  3. Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10320-5 [PMID: 15226493]
  4. PLoS Biol. 2017 Apr 19;15(4):e2001573 [PMID: 28422959]
  5. Elife. 2021 Dec 23;10: [PMID: 34939935]
  6. Evodevo. 2014 Oct 09;5(1):36 [PMID: 25664163]
  7. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):226-31 [PMID: 21169504]
  8. Genes Dev. 1997 May 15;11(10):1207-25 [PMID: 9171367]
  9. Cell. 1988 Nov 4;55(3):519-29 [PMID: 2902928]
  10. Mech Dev. 2002 Aug;116(1-2):231-4 [PMID: 12128231]
  11. Dev Genes Evol. 2017 Jun;227(3):201-211 [PMID: 28474175]
  12. Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24876-24884 [PMID: 32958671]
  13. Cell Mol Life Sci. 2018 May;75(9):1587-1612 [PMID: 29335749]
  14. Mol Biol Evol. 2014 Dec;31(12):3136-47 [PMID: 25261405]
  15. Chem Biol. 2009 May 29;16(5):479-89 [PMID: 19477412]
  16. Dev Genes Evol. 2005 Jan;215(1):41-5 [PMID: 15526215]
  17. Development. 2011 Nov;138(22):4819-30 [PMID: 22028023]
  18. J Comp Neurol. 1998 Mar 16;392(3):343-51 [PMID: 9511922]
  19. Development. 2018 Jun 26;145(12): [PMID: 29945988]
  20. Front Cell Dev Biol. 2021 May 20;9:668006 [PMID: 34095136]
  21. Dev Genes Evol. 2006 Oct;216(10):623-33 [PMID: 16773340]
  22. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3920-5 [PMID: 8632990]
  23. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  24. Curr Biol. 2018 Sep 10;28(17):2813-2823.e2 [PMID: 30146154]
  25. J Neurosci. 2002 Jul 1;22(13):5291-9 [PMID: 12097480]
  26. Genes (Basel). 2019 Nov 29;10(12): [PMID: 31795452]
  27. Int J Dev Biol. 2007;51(3):191-200 [PMID: 17486539]
  28. J Exp Zool B Mol Dev Evol. 2004 Jul 15;302(4):384-91 [PMID: 15287102]
  29. Development. 2005 Jan;132(1):61-73 [PMID: 15576409]
  30. Dev Biol. 2006 Aug 1;296(1):190-202 [PMID: 16750825]
  31. J Mol Biol. 2000 Oct 6;302(5):1023-39 [PMID: 11183772]
  32. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9560-5 [PMID: 12883006]
  33. Curr Biol. 2021 Aug 23;31(16):3629-3638.e2 [PMID: 34166606]
  34. Genome Biol Evol. 2015 Jan 27;7(3):677-88 [PMID: 25631164]
  35. Int J Dev Biol. 2017;61(10-11-12):689-696 [PMID: 29319117]
  36. Dev Genes Evol. 2008 Dec;218(11-12):579-90 [PMID: 18797923]
  37. Int J Dev Biol. 2017;61(10-11-12):793-800 [PMID: 29319125]
  38. Genome Biol. 2022 Nov 18;23(1):243 [PMID: 36401278]
  39. Glia. 2021 Jul;69(7):1654-1678 [PMID: 33624886]
  40. Evodevo. 2018 Jun 21;9:16 [PMID: 29977493]
  41. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  42. Neuron. 1994 Jan;12(1):205-18 [PMID: 7904822]
  43. Nature. 2008 Jun 19;453(7198):1064-71 [PMID: 18563158]
  44. Evodevo. 2014 Nov 05;5:41 [PMID: 25908957]
  45. Evodevo. 2017 Feb 16;8:4 [PMID: 28239444]
  46. Development. 2002 Jun;129(12):2905-16 [PMID: 12050138]
  47. Methods Enzymol. 2020;637:419-452 [PMID: 32359654]
  48. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9445-50 [PMID: 9256502]
  49. J Comp Neurol. 1998 Oct 26;400(3):310-6 [PMID: 9779937]
  50. Genes Dev. 1988 Dec;2(12A):1582-99 [PMID: 2905684]
  51. Nat Neurosci. 2011 Jun;14(6):685-7 [PMID: 21572433]
  52. Mech Dev. 1999 Dec;89(1-2):75-85 [PMID: 10559482]
  53. Genes Dev. 1993 Jun;7(6):913-32 [PMID: 8504933]
  54. Dev Biol. 2007 Jun 1;306(1):143-59 [PMID: 17477914]
  55. Sci Adv. 2018 Feb 21;4(2):eaao1261 [PMID: 29492455]
  56. Cell. 1990 Nov 30;63(5):895-905 [PMID: 2257628]
  57. Cell Rep. 2020 Mar 31;30(13):4473-4489.e5 [PMID: 32234481]
  58. Genes Dev. 1997 Jul 15;11(14):1873-84 [PMID: 9242494]
  59. Brain Res Bull. 2008 Mar 18;75(2-4):324-30 [PMID: 18331893]
  60. BMC Biol. 2007 Oct 26;5:47 [PMID: 17963489]
  61. Mol Neurobiol. 2018 Jun;55(6):5210-5229 [PMID: 28875454]
  62. J Cell Sci. 2015 Jul 1;128(13):2303-18 [PMID: 25991548]
  63. Cells. 2021 Dec 02;10(12): [PMID: 34943900]
  64. Nature. 1996 Jun 13;381(6583):603-6 [PMID: 8637595]
  65. Front Cell Dev Biol. 2020 Aug 04;8:705 [PMID: 32850825]
  66. Development. 2006 May;133(10):2011-22 [PMID: 16651543]
  67. BMC Neurosci. 2012 Jun 07;13:59 [PMID: 22676056]
  68. Mol Biol Evol. 2022 Apr 11;39(4): [PMID: 35276009]
  69. Wiley Interdiscip Rev Dev Biol. 2020 Jul;9(4):e374 [PMID: 32012462]
  70. Dev Genes Evol. 2007 Apr;217(4):307-13 [PMID: 17318659]
  71. Dev Biol. 2010 Feb 1;338(1):98-106 [PMID: 19914237]
  72. Int J Dev Biol. 2017;61(10-11-12):733-747 [PMID: 29319120]
  73. J Exp Zool B Mol Dev Evol. 2022 Jun;338(4):225-240 [PMID: 34793615]
  74. Elife. 2014 Jun 14;3: [PMID: 24929964]
  75. Front Cell Dev Biol. 2022 Mar 07;10:782722 [PMID: 35342743]
  76. Neuron. 1999 Feb;22(2):339-47 [PMID: 10069339]
  77. BMC Evol Biol. 2017 Jan 19;17(1):24 [PMID: 28103795]
  78. Genes Dev. 1991 Jun;5(6):897-907 [PMID: 2044958]
  79. Cell. 1988 Nov 4;55(3):505-18 [PMID: 2902927]
  80. Philos Trans R Soc Lond B Biol Sci. 2022 Feb 14;377(1844):20200520 [PMID: 34957845]

MeSH Term

Animals
Tretinoin
Lancelets
Neurogenesis
Transcription Factors
Neurons

Chemicals

Tretinoin
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0POUexpressionsignalingRAamphioxusgenesdescriptionneuralcellexperimentsindicatedretinoicacidvivodevelopmentassessedhybridizationembryosendogenouseffectstreatmentsgenefirstnervecordpatterningterminalselectorGABAergicneuronsfamilyevolutionarilyconservedtranscriptionfactorskeyfunctionstypespecificationneurogenesisvitrocontrolledintercellularmoleculeworkaimedcharacterizerolesregulationstudiedcephalochordateanimalmodelcrucialunderstandingevolutionaryoriginsvertebratespatternsdifferentdevelopmentalstageschromogenicsituchainreactionExpressionsubjectedpharmacologicalmanipulationactivityadditiondetailedsurveyincludedfoundaffectedalterationslevelscontrastregulatedendodermrespectivelyrevealeddevelopingplaysdualrole1providinganteroposteriorinformationcells2specifyingtypesfindingcoherentfunctionrepresentsRA-inducedchangesRetinoicAcidGenesDevelopingAmphioxus:FocusNeuralDevelopmentBMS493GADHCRPou4all-transcephalochordatesevolution

Similar Articles

Cited By