Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends.

Zina Fredj, Mohamad Sawan
Author Information
  1. Zina Fredj: CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China. ORCID
  2. Mohamad Sawan: CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China. ORCID

Abstract

Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain's highest levels of mental function and play key roles in neurological disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have been widely adopted and perceived as a dramatically accelerating development in the last decade. Therefore, this review aims to provide a comprehensive overview on the recent advances and main challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors, reviewing their sensing mechanism and the unique characteristics brought by the emergence of nanotechnology. Based on specific biosensors' performance metrics, multiple perspectives on the therapeutic use of nanomaterial for catecholamines analysis and future development trends are also summarized.

Keywords

References

  1. J Colloid Interface Sci. 2018 Feb 15;512:812-818 [PMID: 29121608]
  2. Molecules. 2020 May 29;25(11): [PMID: 32485804]
  3. Anal Chem. 2018 Sep 18;90(18):11099-11105 [PMID: 30137976]
  4. Biosens Bioelectron. 2019 May 15;133:205-214 [PMID: 30939397]
  5. Talanta. 2021 Oct 1;233:122545 [PMID: 34215048]
  6. ACS Chem Neurosci. 2020 Jan 2;11(1):25-33 [PMID: 31760746]
  7. Neurol Sci. 2023 Jan;44(1):99-113 [PMID: 36169755]
  8. Chemosphere. 2022 Dec;308(Pt 2):136416 [PMID: 36099991]
  9. Bioorg Chem. 2023 Feb;131:106306 [PMID: 36493621]
  10. ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7784-7791 [PMID: 33533611]
  11. ACS Appl Mater Interfaces. 2021 Dec 29;13(51):60878-60893 [PMID: 34920668]
  12. ACS Sens. 2021 Jan 22;6(1):252-258 [PMID: 33395257]
  13. Neuropharmacology. 2021 Dec 15;201:108814 [PMID: 34624301]
  14. Anal Chem. 2019 Apr 2;91(7):4618-4624 [PMID: 30810304]
  15. Anal Chim Acta. 2022 Oct 9;1229:340365 [PMID: 36156223]
  16. Ageing Res Rev. 2022 Feb;74:101558 [PMID: 34990846]
  17. Biosens Bioelectron. 2018 Oct 15;117:40-46 [PMID: 29885578]
  18. Mikrochim Acta. 2019 Aug 13;186(9):618 [PMID: 31410617]
  19. Biosensors (Basel). 2021 Jun 03;11(6): [PMID: 34204902]
  20. Int J Biol Macromol. 2019 Aug 15;135:400-406 [PMID: 31129206]
  21. Biosensors (Basel). 2021 Oct 21;11(11): [PMID: 34821626]
  22. Anal Chem. 2021 Mar 23;93(11):4916-4923 [PMID: 33719390]
  23. J Psychiatr Res. 2021 May;137:89-95 [PMID: 33662656]
  24. Biosens Bioelectron. 2022 Apr 1;201:113959 [PMID: 34999521]
  25. Anal Chim Acta. 2019 Apr 4;1052:170-178 [PMID: 30685036]
  26. Talanta. 2022 Aug 1;245:123468 [PMID: 35405447]
  27. Lab Chip. 2022 Apr 12;22(8):1615-1629 [PMID: 35333271]
  28. Biosens Bioelectron. 2019 Jun 15;135:36-44 [PMID: 30991270]
  29. Colloids Surf B Biointerfaces. 2019 Aug 1;180:1-8 [PMID: 31009905]
  30. J Int Med Res. 2020 Sep;48(9):300060520958594 [PMID: 32962495]
  31. Neurobiol Stress. 2022 Oct 03;21:100494 [PMID: 36532376]
  32. Biosens Bioelectron. 2017 Feb 15;88:273-282 [PMID: 27567263]
  33. ACS Nano. 2022 Aug 23;16(8):13183-13198 [PMID: 35868019]
  34. Biosens Bioelectron. 2020 Oct 1;165:112412 [PMID: 32729531]
  35. Biosens Bioelectron. 2023 Jan 15;220:114892 [PMID: 36413914]
  36. Anal Chim Acta. 2020 Jan 6;1093:61-74 [PMID: 31735216]
  37. ACS Omega. 2018 Mar 31;3(3):2966-2973 [PMID: 30023855]
  38. Sci Rep. 2022 Apr 28;12(1):6957 [PMID: 35484282]
  39. J Psychiatr Res. 1999 Jan-Feb;33(1):73-8 [PMID: 10094243]
  40. ACS Chem Neurosci. 2017 Feb 15;8(2):218-220 [PMID: 28177214]
  41. ACS Appl Mater Interfaces. 2018 Feb 7;10(5):4359-4368 [PMID: 29308644]
  42. J Nanosci Nanotechnol. 2018 Aug 1;18(8):5380-5389 [PMID: 29458589]
  43. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:93-99 [PMID: 28629098]
  44. Front Mol Neurosci. 2020 Oct 26;13:588802 [PMID: 33192300]
  45. ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42136-42145 [PMID: 30444110]
  46. ACS Appl Mater Interfaces. 2019 Nov 27;11(47):44466-44473 [PMID: 31691561]
  47. J Neurosci Methods. 2022 Jan 1;365:109386 [PMID: 34653500]
  48. Mikrochim Acta. 2022 Mar 28;189(4):161 [PMID: 35344127]
  49. Lancet Diabetes Endocrinol. 2020 Dec;8(12):978-986 [PMID: 33128872]
  50. Angew Chem Int Ed Engl. 2022 Jan 3;61(1):e202113406 [PMID: 34734466]
  51. Neurosci Res. 2022 May;178:87-92 [PMID: 35074444]
  52. Biosens Bioelectron. 2023 Jan 15;220:114899 [PMID: 36399941]
  53. Talanta. 2022 Nov 1;249:123700 [PMID: 35751922]
  54. Chem Rev. 2012 Feb 8;112(2):970-1000 [PMID: 21916418]
  55. Anal Bioanal Chem. 2022 Jan;414(2):1163-1176 [PMID: 34718838]
  56. Transl Psychiatry. 2021 Feb 16;11(1):59 [PMID: 33589583]
  57. Anal Chem. 2022 Jul 12;94(27):9548-9556 [PMID: 35750055]
  58. Comput Biol Chem. 2021 Dec;95:107573 [PMID: 34562727]
  59. Spectrochim Acta A Mol Biomol Spectrosc. 2021 May 5;252:119519 [PMID: 33578121]
  60. ACS Chem Neurosci. 2019 Apr 17;10(4):1908-1914 [PMID: 30252438]
  61. Microsyst Nanoeng. 2023 Jan 5;9:7 [PMID: 36620394]
  62. J Pharm Biomed Anal. 2021 Feb 5;194:113773 [PMID: 33279298]
  63. Anal Chem. 2020 Nov 17;92(22):15194-15201 [PMID: 33136382]
  64. Mikrochim Acta. 2022 Jan 10;189(2):54 [PMID: 35001163]
  65. Anal Chim Acta. 2022 Jun 29;1214:339963 [PMID: 35649641]
  66. J Pharm Biomed Anal. 2021 Oct 25;205:114278 [PMID: 34365189]
  67. Analyst. 2020 Mar 2;145(5):1605-1628 [PMID: 31970360]
  68. Acta Psychiatr Scand. 1982 Feb;65(2):142-7 [PMID: 7187178]
  69. Sci Rep. 2018 Sep 13;8(1):13722 [PMID: 30213995]
  70. Anal Chim Acta. 2021 Nov 22;1186:339086 [PMID: 34756249]
  71. Anal Chem. 2022 Jun 21;94(24):8605-8617 [PMID: 35678711]
  72. ACS Chem Neurosci. 2021 Dec 15;12(24):4546-4553 [PMID: 34817175]
  73. Chin Med J (Engl). 2017 Sep 5;130(17):2112-2116 [PMID: 28836556]
  74. Bioelectrochemistry. 2022 Aug;146:108148 [PMID: 35504227]
  75. Anal Chem. 2022 Nov 29;94(47):16345-16352 [PMID: 36444539]
  76. Anal Methods. 2020 Aug 21;12(31):3883-3891 [PMID: 32716418]
  77. Biosens Bioelectron. 2013 Jul 15;45:114-22 [PMID: 23455050]
  78. Curr Hypertens Rep. 2012 Feb;14(1):1-7 [PMID: 22124970]
  79. Nano Lett. 2022 May 11;22(9):3668-3677 [PMID: 35439419]
  80. ACS Appl Bio Mater. 2020 Nov 16;3(11):7769-7778 [PMID: 35019517]
  81. J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Jan 15;1163:122507 [PMID: 33387860]
  82. Talanta. 2023 Jan 15;252:123776 [PMID: 35987127]
  83. Trends Pharmacol Sci. 2001 Jan;22(1):46-7 [PMID: 11165672]
  84. Mater Today Bio. 2021 Nov 25;12:100168 [PMID: 34877521]
  85. Sci Rep. 2017 Aug 15;7(1):8266 [PMID: 28811657]
  86. Brain Res. 2022 Oct 1;1792:148031 [PMID: 35901964]
  87. ACS Sens. 2020 Dec 24;5(12):4092-4100 [PMID: 33321038]
  88. ACS Chem Neurosci. 2021 Aug 4;12(15):2718-2728 [PMID: 34010562]
  89. Colloids Surf B Biointerfaces. 2020 Nov;195:111228 [PMID: 32668372]
  90. ACS Nanosci Au. 2022 Oct 28;3(1):1-27 [PMID: 37101467]
  91. ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7772-7779 [PMID: 28177221]
  92. Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:696-704 [PMID: 30033304]
  93. Chem Commun (Camb). 2021 Dec 7;57(97):13084-13113 [PMID: 34811563]
  94. Anal Chim Acta. 2020 Jul 11;1120:11-23 [PMID: 32475387]
  95. Analyst. 2020 Sep 28;145(19):6193-6210 [PMID: 32808603]
  96. Environ Res. 2021 Sep;200:111366 [PMID: 34029547]
  97. Bioelectrochemistry. 2022 Aug;146:108155 [PMID: 35569237]
  98. Anal Chem. 2020 Sep 15;92(18):12347-12355 [PMID: 32786441]
  99. Phytomedicine. 2022 Nov;106:154432 [PMID: 36113188]

Grants

  1. 10318A992001/Westlake University
  2. 2020R01005/Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang
  3. 210230006022219/001/Research Center for Industries of the Future, Westlake University

MeSH Term

Catecholamines
Electrochemical Techniques
Nanostructures
Biosensing Techniques
Neurotransmitter Agents

Chemicals

Catecholamines
Neurotransmitter Agents

Word Cloud

Created with Highcharts 10.0.0neurotransmitterscatecholamineselectrochemicalbiosensorsCatecholaminesdopamineepinephrinenorepinephrineneurologicalanalysisdiseasescatecholaminedevelopmentincludingconsideredonecrucialsubgroupscentralnervoussystemCNSactbrain'shighestlevelsmentalfunctionplaykeyrolesdisordersAccordinglybiologicalsamplesshowngreatinterestclinicalpharmaceuticalimportancetowardearlydiagnosisEpilepsyParkinsonAlzheimerpromisingroutesreal-timemonitoringopticalwidelyadoptedperceiveddramaticallyacceleratinglastdecadeThereforereviewaimsprovidecomprehensiveoverviewrecentadvancesmainchallengesParticularemphasisgivenreviewingsensingmechanismuniquecharacteristicsbroughtemergencenanotechnologyBasedspecificbiosensors'performancemetricsmultipleperspectivestherapeuticusenanomaterialfuturetrendsalsosummarizedAdvancedNanomaterials-BasedElectrochemicalBiosensorsDetection:ChallengesTrendsbiosensornanomaterials

Similar Articles

Cited By