Sleep Quality and Duration in Children That Consume Caffeine: Impact of Dose and Genetic Variation in and .

Chaten D Jessel, Ankita Narang, Rayyan Zuberi, Chad A Bousman
Author Information
  1. Chaten D Jessel: Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada.
  2. Ankita Narang: Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N4N1, Canada.
  3. Rayyan Zuberi: Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada.
  4. Chad A Bousman: Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada. ORCID

Abstract

caffeine is the most consumed drug in the world, and it is commonly used by children. Despite being considered relatively safe, caffeine can have marked effects on sleep. Studies in adults suggest that genetic variants in the adenosine A2A receptor (, rs5751876) and cytochrome P450 1A (, rs2472297, rs762551) loci are correlated with caffeine-associated sleep disturbances and caffeine intake (dose), but these associations have not been assessed in children. We examined the independent and interaction effects of daily caffeine dose and candidate variants in and on the sleep quality and duration in 6112 children aged 9-10 years who used caffeine and were enrolled in the Adolescent Brain Cognitive Development (ABCD) study. We found that children with higher daily caffeine doses had lower odds of reporting > 9 h of sleep per night (OR = 0.81, 95% CI = 0.74-0.88, and = 1.2 �� 10). For every mg/kg/day of caffeine consumed, there was a 19% (95% CI = 12-26%) decrease in the odds of children reporting > 9 h of sleep. However, neither nor genetic variants were associated with sleep quality, duration, or caffeine dose. Likewise, genotype by caffeine dose interactions were not detected. Our findings suggest that a daily caffeine dose has a clear negative correlation with sleep duration in children, but this association is not moderated by the or genetic variation.

Keywords

References

  1. Hum Mol Genet. 2011 May 15;20(10):2071-7 [PMID: 21357676]
  2. Hum Mol Genet. 2016 Dec 15;25(24):5472-5482 [PMID: 27702941]
  3. J Am Acad Child Adolesc Psychiatry. 2019 Jan;58(1):36-45 [PMID: 30577937]
  4. Nat Sci Sleep. 2018 Dec 14;10:453-480 [PMID: 30588139]
  5. Dev Cogn Neurosci. 2018 Aug;32:97-106 [PMID: 29606560]
  6. Clin Pharmacol Ther. 2007 May;81(5):692-8 [PMID: 17329997]
  7. Nutrition. 2016 Nov-Dec;32(11-12):1193-9 [PMID: 27377580]
  8. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Jul 13;109:110232 [PMID: 33373678]
  9. Nat Genet. 2014 Jun;46(6):543-550 [PMID: 24816252]
  10. Cancer. 1950 Jan;3(1):32-5 [PMID: 15405679]
  11. Nutr Res. 2013 Sep;33(9):726-32 [PMID: 24034572]
  12. Br J Pharmacol. 2012 Mar;165(6):1904-1913 [PMID: 21950736]
  13. Neurosci Biobehav Rev. 2009 Jun;33(6):793-806 [PMID: 19428492]
  14. Nutr Rev. 2014 Oct;72 Suppl 1:65-71 [PMID: 25293545]
  15. J Acad Nutr Diet. 2018 Dec;118(12):2245-2253.e1 [PMID: 30497637]
  16. J Caffeine Res. 2016 Jun 1;6(2):64-72 [PMID: 27274416]
  17. J Am Diet Assoc. 2005 Jan;105(1):110-3 [PMID: 15635355]
  18. Genes (Basel). 2019 Dec 06;10(12): [PMID: 31817803]
  19. Sleep Med. 2017 Feb;30:210-215 [PMID: 28215251]
  20. Pharmacogenet Genomics. 2012 May;22(5):389-95 [PMID: 22293536]
  21. Neuropsychopharmacology. 2021 Jan;46(1):131-142 [PMID: 32541809]
  22. Clin Pharmacokinet. 2014 Jul;53(7):625-36 [PMID: 24671884]
  23. BMC Genomics. 2016 Feb 27;17:145 [PMID: 26921259]
  24. Psychopharmacology (Berl). 2020 Oct;237(10):3109-3116 [PMID: 32601990]
  25. Pharmacogenomics J. 2018 Dec;18(6):760-768 [PMID: 29282363]
  26. J Sleep Res. 1996 Dec;5(4):251-61 [PMID: 9065877]
  27. Pharmacol Rev. 2018 Apr;70(2):384-411 [PMID: 29514871]
  28. Sleep. 2012 Jul 01;35(7):967-75 [PMID: 22754043]
  29. J Clin Sleep Med. 2016 Jun 15;12(6):785-6 [PMID: 27250809]
  30. J Clin Pharmacol. 2016 Mar;56(3):266-83 [PMID: 26139104]
  31. Nat Genet. 2006 Aug;38(8):904-9 [PMID: 16862161]
  32. Mol Psychiatry. 2015 May;20(5):647-656 [PMID: 25288136]
  33. Nucleic Acids Res. 2020 Jan 8;48(D1):D941-D947 [PMID: 31584097]

Grants

  1. U24 DA041147/NIDA NIH HHS
  2. U01 DA051039/NIDA NIH HHS
  3. U01 DA041120/NIDA NIH HHS
  4. U01 DA051018/NIDA NIH HHS
  5. U01 DA041093/NIDA NIH HHS
  6. U24 DA041123/NIDA NIH HHS
  7. U01 DA051038/NIDA NIH HHS
  8. U01 DA051037/NIDA NIH HHS
  9. U01 DA051016/NIDA NIH HHS
  10. U01 DA041106/NIDA NIH HHS
  11. U01 DA041117/NIDA NIH HHS
  12. U01 DA041148/NIDA NIH HHS
  13. U01 DA041174/NIDA NIH HHS
  14. U01 DA041134/NIDA NIH HHS
  15. U01 DA041022/NIDA NIH HHS
  16. U01 DA041156/NIDA NIH HHS
  17. U01 DA050987/NIDA NIH HHS
  18. U01 DA041025/NIDA NIH HHS
  19. U01 DA050989/NIDA NIH HHS
  20. U01 DA041089/NIDA NIH HHS
  21. U01 DA050988/NIDA NIH HHS
  22. U01 DA041028/NIDA NIH HHS
  23. U01 DA041048/NIDA NIH HHS

MeSH Term

Adult
Adolescent
Humans
Child
Caffeine
Receptor, Adenosine A2A
Sleep Quality
Sleep
Genetic Variation

Chemicals

Caffeine
Receptor, Adenosine A2A

Word Cloud

Created with Highcharts 10.0.0caffeinesleepchildrendose=geneticvariantsdailydurationconsumedusedeffectssuggestqualityoddsreporting>9h095%CIgenotypeCaffeinedrugworldcommonlyDespiteconsideredrelativelysafecanmarkedStudiesadultsadenosineA2Areceptorrs5751876cytochromeP4501Ars2472297rs762551locicorrelatedcaffeine-associateddisturbancesintakeassociationsassessedexaminedindependentinteractioncandidate6112aged9-10yearsenrolledAdolescentBrainCognitiveDevelopmentABCDstudyfoundhigherdoseslowerpernightOR8174-08812��10everymg/kg/day19%12-26%decreaseHoweverneitherassociatedLikewiseinteractionsdetectedfindingsclearnegativecorrelationassociationmoderatedvariationSleepQualityDurationChildrenConsumeCaffeine:ImpactDoseGeneticVariationdose���response

Similar Articles

Cited By (1)