Chronic Adaptations to Eccentric Cycling Training: A Systematic Review and Meta-Analysis.

Renan Vieira Barreto, Leonardo Coelho Rabello de Lima, Fernando Klitzke Borszcz, Ricardo Dantas de Lucas, Benedito Sérgio Denadai
Author Information
  1. Renan Vieira Barreto: Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro 13506-900, Brazil. ORCID
  2. Leonardo Coelho Rabello de Lima: School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil. ORCID
  3. Fernando Klitzke Borszcz: Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil. ORCID
  4. Ricardo Dantas de Lucas: Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil. ORCID
  5. Benedito Sérgio Denadai: Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro 13506-900, Brazil.

Abstract

This study aimed to investigate the effects of eccentric cycling (ECC) training on performance, physiological, and morphological parameters in comparison to concentric cycling (CON) training. Searches were conducted using PubMed, Embase, and ScienceDirect. Studies comparing the effect of ECC and CON training regimens on performance, physiological, and/or morphological parameters were included. Bayesian multilevel meta-analysis models were used to estimate the population's mean difference between chronic responses from ECC and CON training protocols. Group levels and meta-regression were used to evaluate the specific effects of subjects and study characteristics. Fourteen studies were included in this review. The meta-analyses showed that ECC training was more effective in increasing knee extensor strength, vastus lateralis fiber cross-sectional area, and six-minute walking distance compared to CON. Moreover, ECC was as effective as CON in decreasing body fat percentage. CON was more effective in increasing V˙O2max and peak power output attained during concentric incremental tests. However, group-level analyses revealed that ECC was more effective than CON in improving V˙O2max in patients with cardiopulmonary diseases. ECC is a viable modality for exercise interventions aiming to improve parameters of muscle strength, hypertrophy, functional capacity, aerobic power, and body composition, with more advantages than CON training in improving neuromuscular variables.

Keywords

References

  1. Eur J Appl Physiol. 2022 Feb;122(2):489-502 [PMID: 34799753]
  2. Br J Sports Med. 2009 Aug;43(8):556-68 [PMID: 18981046]
  3. Front Physiol. 2017 Jul 04;8:447 [PMID: 28725197]
  4. J Orthop Sports Phys Ther. 2007 Jan;37(1):10-8 [PMID: 17286094]
  5. Phys Ther. 2009 Jan;89(1):51-9 [PMID: 18988664]
  6. Am J Physiol Regul Integr Comp Physiol. 2007 Apr;292(4):R1641-8 [PMID: 17158264]
  7. Clin Rehabil. 2010 Jul;24(7):590-9 [PMID: 20530649]
  8. J Sport Health Sci. 2022 Jan;11(1):43-49 [PMID: 34509714]
  9. Br J Sports Med. 2019 Sep;53(17):1070-1077 [PMID: 30636702]
  10. Histochem Cell Biol. 2003 May;119(5):383-93 [PMID: 12712356]
  11. Eur J Appl Physiol. 2014 Apr;114(4):805-14 [PMID: 24390692]
  12. Biomed Res Int. 2015;2015:193741 [PMID: 26543850]
  13. J Appl Physiol (1985). 2007 Nov;103(5):1565-75 [PMID: 17717119]
  14. J Sci Med Sport. 2018 Dec;21(12):1238-1243 [PMID: 29789262]
  15. Exp Physiol. 2009 Jul;94(7):825-33 [PMID: 19395657]
  16. Intern Med J. 2009 Aug;39(8):495-501 [PMID: 19732197]
  17. Exp Gerontol. 2010 Jun;45(6):400-9 [PMID: 20303404]
  18. Antioxidants (Basel). 2021 Feb 13;10(2): [PMID: 33668606]
  19. Eur J Prev Cardiol. 2012 Dec;19(6):1333-56 [PMID: 22637740]
  20. J Cardiopulm Rehabil Prev. 2016 Mar-Apr;36(2):75-83 [PMID: 26906147]
  21. Am J Sports Med. 2002 Mar-Apr;30(2):199-203 [PMID: 11912088]
  22. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  23. Eur J Appl Physiol. 2004 May;91(5-6):572-8 [PMID: 14648125]
  24. Med Sci Sports Exerc. 2009 Feb;41(2):459-71 [PMID: 19127177]
  25. Front Physiol. 2021 Jan 27;11:596351 [PMID: 33584331]
  26. Clin Biomech (Bristol, Avon). 2010 Feb;25(2):154-8 [PMID: 19931956]
  27. Am J Physiol. 1999 Feb;276(2):R611-5 [PMID: 9950944]
  28. J Clin Med. 2021 Sep 01;10(17): [PMID: 34501416]
  29. PLoS One. 2019 Jan 2;14(1):e0208452 [PMID: 30601819]
  30. Gerontology. 2011;57(6):528-38 [PMID: 21311168]
  31. Sports Med. 2017 Apr;47(4):663-675 [PMID: 27638040]
  32. J Appl Physiol (1985). 2014 Jun 1;116(11):1426-34 [PMID: 23823152]
  33. J Appl Physiol (1985). 2001 Nov;91(5):2135-42 [PMID: 11641354]
  34. Eur J Phys Rehabil Med. 2016 Apr;52(2):159-68 [PMID: 25587804]
  35. Sports Health. 2017 Jul/Aug;9(4):333-340 [PMID: 28571492]
  36. J Gerontol A Biol Sci Med Sci. 2003 May;58(5):M419-24 [PMID: 12730250]
  37. J Physiol. 2001 Dec 1;537(Pt 2):333-45 [PMID: 11731568]
  38. J Strength Cond Res. 2017 Sep;31(9):2599-2608 [PMID: 28486337]
  39. Int J Sports Med. 2014 Jun;35(7):559-65 [PMID: 24234011]
  40. Phys Ther. 2003 Aug;83(8):713-21 [PMID: 12882612]
  41. J Physiother. 2020 Jan;66(1):59 [PMID: 31521549]
  42. Front Physiol. 2017 Mar 03;8:114 [PMID: 28316572]
  43. Respir Physiol Neurobiol. 2020 May;276:103414 [PMID: 32050099]
  44. Syst Rev. 2016 Dec 5;5(1):210 [PMID: 27919275]
  45. Eur J Appl Physiol. 2021 Feb;121(2):381-407 [PMID: 33180156]
  46. Med Sci Sports Exerc. 2003 Jul;35(7):1076-82 [PMID: 12840625]
  47. Acta Physiol Scand. 2001 Mar;171(3):311-9 [PMID: 11412143]
  48. Am J Physiol Regul Integr Comp Physiol. 2000 May;278(5):R1282-8 [PMID: 10801298]
  49. Front Physiol. 2016 Nov 16;7:483 [PMID: 27899894]
  50. Int J Sports Med. 1983 Aug;4(3):177-83 [PMID: 6629600]
  51. Scand J Med Sci Sports. 2019 Jan;29(1):4-15 [PMID: 30222208]
  52. Ann Phys Rehabil Med. 2013 Feb;56(1):30-40 [PMID: 23369425]
  53. Sports Med. 2017 May;47(5):907-916 [PMID: 27752982]
  54. Eur J Appl Physiol. 2009 Sep;107(2):145-53 [PMID: 19543908]
  55. Appl Physiol Nutr Metab. 2016 Nov;41(11):1204-1207 [PMID: 27769148]
  56. Am J Phys Med Rehabil. 2013 Jan;92(1):68-76 [PMID: 23044702]

MeSH Term

Humans
Bayes Theorem
Muscle Strength
Quadriceps Muscle
Knee
Knee Joint
Adaptation, Physiological
Muscle, Skeletal
Resistance Training

Word Cloud

Created with Highcharts 10.0.0CONECCtrainingeffectiveparametersstrengthstudyeffectseccentriccyclingperformancephysiologicalmorphologicalconcentricincludedusedincreasingbodyV˙O2maxpowerimprovingexercisecapacityaerobicaimedinvestigatecomparisonSearchesconductedusingPubMedEmbaseScienceDirectStudiescomparingeffectregimensand/orBayesianmultilevelmeta-analysismodelsestimatepopulation'smeandifferencechronicresponsesprotocolsGrouplevelsmeta-regressionevaluatespecificsubjectscharacteristicsFourteenstudiesreviewmeta-analysesshowedkneeextensorvastuslateralisfibercross-sectionalareasix-minutewalkingdistancecomparedMoreoverdecreasingfatpercentagepeakoutputattainedincrementaltestsHowevergroup-levelanalysesrevealedpatientscardiopulmonarydiseasesviablemodalityinterventionsaimingimprovemusclehypertrophyfunctionalcompositionadvantagesneuromuscularvariablesChronicAdaptationsEccentricCyclingTraining:SystematicReviewMeta-AnalysisCOPD

Similar Articles

Cited By