Inertial Sensor Location for Ground Reaction Force and Gait Event Detection Using Reservoir Computing in Gait.

Sara Havashinezhadian, Laurent Chiasson-Poirier, Julien Sylvestre, Katia Turcot
Author Information
  1. Sara Havashinezhadian: Interdisciplinary Center for Research in Rehabilitation and Social Integration (CIRRIS), Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada.
  2. Laurent Chiasson-Poirier: Department of Mechanical Engineering, Interdisciplinary Institute for Technological Innovation, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
  3. Julien Sylvestre: Department of Mechanical Engineering, Interdisciplinary Institute for Technological Innovation, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada. ORCID
  4. Katia Turcot: Interdisciplinary Center for Research in Rehabilitation and Social Integration (CIRRIS), Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada. ORCID

Abstract

Inertial measurement units (IMUs) have shown promising outcomes for estimating gait event detection (GED) and ground reaction force (GRF). This study aims to determine the best sensor location for GED and GRF prediction in gait using data from IMUs for healthy and medial knee osteoarthritis (MKOA) individuals. In this study, 27 healthy and 18 MKOA individuals participated. Participants walked at different speeds on an instrumented treadmill. Five synchronized IMUs (Physilog, 200 Hz) were placed on the lower limb (top of the shoe, heel, above medial malleolus, middle and front of tibia, and on medial of shank close to knee joint). To predict GRF and GED, an artificial neural network known as reservoir computing was trained using combinations of acceleration signals retrieved from each IMU. For GRF prediction, the best sensor location was top of the shoe for 72.2% and 41.7% of individuals in the healthy and MKOA populations, respectively, based on the minimum value of the mean absolute error (MAE). For GED, the minimum MAE value for both groups was for middle and front of tibia, then top of the shoe. This study demonstrates that top of the shoe is the best sensor location for GED and GRF prediction.

Keywords

References

  1. Arthritis Rheum. 2005 Sep;52(9):2835-44 [PMID: 16145666]
  2. Sports Med. 2021 Jul;51(7):1449-1489 [PMID: 33761128]
  3. J Biomech. 1993 Jun;26(6):645-51 [PMID: 8514810]
  4. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6507-10 [PMID: 22255829]
  5. J Neuroeng Rehabil. 2015 Oct 14;12:90 [PMID: 26467753]
  6. World J Orthop. 2017 Apr 18;8(4):322-328 [PMID: 28473960]
  7. Osteoarthritis Cartilage. 2019 Feb;27(2):248-256 [PMID: 30445222]
  8. Clin Biomech (Bristol, Avon). 2004 Jan;19(1):44-9 [PMID: 14659929]
  9. PLoS One. 2017 Dec 29;12(12):e0189876 [PMID: 29287067]
  10. PLoS One. 2014 Jun 10;9(6):e99023 [PMID: 24914946]
  11. Sensors (Basel). 2018 Aug 05;18(8): [PMID: 30081607]
  12. Percept Mot Skills. 2013 Jun;116(3):992-1019 [PMID: 24175468]
  13. J Strength Cond Res. 2019 Jul;33 Suppl 1:S95-S102 [PMID: 30234695]
  14. PLoS One. 2012;7(10):e48182 [PMID: 23133564]
  15. Gait Posture. 2018 Oct;66:76-82 [PMID: 30170137]
  16. Sensors (Basel). 2017 Sep 22;17(10): [PMID: 28937593]
  17. Sports Biomech. 2013 Nov;12(4):403-12 [PMID: 24466652]
  18. Gait Posture. 2014 Sep;40(4):587-93 [PMID: 25065627]
  19. J Biomech. 2018 Jul 25;76:269-273 [PMID: 29945786]
  20. Sensors (Basel). 2012;12(5):6102-16 [PMID: 22778632]
  21. Osteoarthritis Cartilage. 2021 Aug;29(8):1138-1146 [PMID: 33757856]
  22. Sensors (Basel). 2016 Dec 31;17(1): [PMID: 28042857]
  23. Clin Biomech (Bristol, Avon). 1998 Apr;13(3):216-229 [PMID: 11415790]
  24. Arthritis Care Res (Hoboken). 2013 Oct;65(10):1643-65 [PMID: 23554153]
  25. J Biomech. 2004 Sep;37(9):1427-32 [PMID: 15275851]
  26. Ann Rheum Dis. 1957 Dec;16(4):494-502 [PMID: 13498604]
  27. IEEE Trans Neural Syst Rehabil Eng. 2020 Apr;28(4):888-894 [PMID: 32149643]
  28. J Neuroeng Rehabil. 2021 Feb 6;18(1):28 [PMID: 33549105]
  29. Gait Posture. 2015 Feb;41(2):409-13 [PMID: 25467428]
  30. Sensors (Basel). 2022 Sep 21;22(19): [PMID: 36236278]
  31. Osteoarthritis Cartilage. 2014 Mar;22(3):457-63 [PMID: 24418677]
  32. J Biomech. 2008 Aug 7;41(11):2597-601 [PMID: 18571656]
  33. Semin Arthritis Rheum. 1991 Jun;20(6 Suppl 2):40-7 [PMID: 1866629]
  34. Sensors (Basel). 2021 Feb 23;21(4): [PMID: 33672353]
  35. J Neuroeng Rehabil. 2008 Nov 17;5:30 [PMID: 19014631]
  36. Sensors (Basel). 2012;12(7):9884-912 [PMID: 23012576]
  37. Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2812-5 [PMID: 26736876]

MeSH Term

Humans
Biomechanical Phenomena
Gait
Walking
Mechanical Phenomena
Lower Extremity
Osteoarthritis, Knee

Word Cloud

Created with Highcharts 10.0.0GEDGRFsensorlocationtopshoeIMUsgaitstudybestpredictionhealthymedialMKOAindividualsInertialmeasurementeventdetectiongroundreactionforceusingkneemiddlefronttibiareservoircomputingminimumvalueMAEGaitunitsshownpromisingoutcomesestimatingaimsdeterminedataosteoarthritis2718participatedParticipantswalkeddifferentspeedsinstrumentedtreadmillFivesynchronizedPhysilog200HzplacedlowerlimbheelmalleolusshankclosejointpredictartificialneuralnetworkknowntrainedcombinationsaccelerationsignalsretrievedIMU722%417%populationsrespectivelybasedmeanabsoluteerrorgroupsdemonstratesSensorLocationGroundReactionForceEventDetectionUsingReservoirComputinginertialunit

Similar Articles

Cited By (1)