Thinking on the Construction of Antimicrobial Peptide Databases: Powerful Tools for the Molecular Design and Screening.

Kun Zhang, Da Teng, Ruoyu Mao, Na Yang, Ya Hao, Jianhua Wang
Author Information
  1. Kun Zhang: Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  2. Da Teng: Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  3. Ruoyu Mao: Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  4. Na Yang: Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  5. Ya Hao: Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  6. Jianhua Wang: Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ORCID

Abstract

With the accelerating growth of antimicrobial resistance (AMR), there is an urgent need for new antimicrobial agents with low or no AMR. Antimicrobial peptides (AMPs) have been extensively studied as alternatives to antibiotics (ATAs). Coupled with the new generation of high-throughput technology for AMP mining, the number of derivatives has increased dramatically, but manual running is time-consuming and laborious. Therefore, it is necessary to establish databases that combine computer algorithms to summarize, analyze, and design new AMPs. A number of AMP databases have already been established, such as the Antimicrobial Peptides Database (APD), the Collection of Antimicrobial Peptides (CAMP), the Database of Antimicrobial Activity and Structure of Peptides (DBAASP), and the Database of Antimicrobial Peptides (dbAMPs). These four AMP databases are comprehensive and are widely used. This review aims to cover the construction, evolution, characteristic function, prediction, and design of these four AMP databases. It also offers ideas for the improvement and application of these databases based on merging the various advantages of these four peptide libraries. This review promotes research and development into new AMPs and lays their foundation in the fields of druggability and clinical precision treatment.

Keywords

References

  1. Pharmaceuticals (Basel). 2013 May 27;6(6):728-58 [PMID: 24276259]
  2. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  3. Blood. 2000 Oct 15;96(8):2664-72 [PMID: 11023496]
  4. Eur J Biochem. 1994 Jan 15;219(1-2):145-54 [PMID: 8306981]
  5. Bioorg Med Chem. 2017 Feb 1;25(3):864-869 [PMID: 28011203]
  6. Int J Mol Sci. 2021 Apr 28;22(9): [PMID: 33924804]
  7. Mar Drugs. 2019 Dec 29;18(1): [PMID: 31905755]
  8. Nucleic Acids Res. 2022 Jan 7;50(D1):D460-D470 [PMID: 34850155]
  9. Nucleic Acids Res. 2021 Jan 8;49(D1):D288-D297 [PMID: 33151284]
  10. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D586-9 [PMID: 14681487]
  11. Front Microbiol. 2021 May 20;12:662462 [PMID: 34093476]
  12. Eur J Biochem. 1982 Sep;127(1):207-17 [PMID: 7140755]
  13. Prog Lipid Res. 2012 Apr;51(2):149-77 [PMID: 22245454]
  14. Res Dev Tech Rep. 1967 Dec 5;:1-13 [PMID: 5300771]
  15. Methods Mol Biol. 2022;2405:1-37 [PMID: 35298806]
  16. Science. 2020 May 1;368(6490): [PMID: 32355003]
  17. Nature. 1972 May 26;237(5352):232-5 [PMID: 4625204]
  18. Amino Acids. 2012 May;42(5):1641-9 [PMID: 21384132]
  19. Amino Acids. 2018 Nov;50(11):1573-1582 [PMID: 30121851]
  20. Chem Biol Drug Des. 2017 Mar;89(3):327-338 [PMID: 27591703]
  21. Respir Res. 2000;1(3):141-50 [PMID: 11667978]
  22. Peptides. 2008 Oct;29(10):1633-44 [PMID: 18656510]
  23. Appl Microbiol Biotechnol. 2015 Mar;99(6):2649-62 [PMID: 25261129]
  24. Trends Biotechnol. 2011 Sep;29(9):464-72 [PMID: 21680034]
  25. J Eur Acad Dermatol Venereol. 2021 Jan;35(1):73-78 [PMID: 32474948]
  26. PLoS One. 2019 Oct 2;14(10):e0219693 [PMID: 31577808]
  27. Methods Mol Biol. 2015;1268:43-66 [PMID: 25555720]
  28. Biopolymers. 2017 Dec 21;: [PMID: 29266227]
  29. Appl Microbiol Biotechnol. 2022 Jan;106(1):211-226 [PMID: 34889983]
  30. Bioinformatics. 2017 Jul 01;33(13):1921-1929 [PMID: 28203715]
  31. Trends Microbiol. 1994 Sep;2(9):324-8 [PMID: 7812665]
  32. Appl Microbiol Biotechnol. 2013 May;97(9):3991-4002 [PMID: 23095942]
  33. Nucleic Acids Res. 2016 Jan 4;44(D1):D1104-12 [PMID: 26578581]
  34. Front Sociol. 2022 Sep 27;7:908811 [PMID: 36237277]
  35. Front Microbiol. 2022 Jun 01;13:865774 [PMID: 35722282]
  36. Int J Antimicrob Agents. 2011 Dec;38(6):510-5 [PMID: 22014884]
  37. Mol Biol Evol. 2021 Oct 27;38(11):5175-5189 [PMID: 34320203]
  38. Biotechnol Adv. 2017 May - Jun;35(3):337-349 [PMID: 28216008]
  39. Biochem Biophys Res Commun. 1978 Aug 14;83(3):901-7 [PMID: 708440]
  40. F1000Res. 2014 Dec 05;3:295 [PMID: 26629331]
  41. Nucleic Acids Res. 2009 Jan;37(Database issue):D933-7 [PMID: 18957441]
  42. J Biol Chem. 2018 Mar 9;293(10):3492-3509 [PMID: 29259134]
  43. Front Psychiatry. 2021 Feb 24;12:581367 [PMID: 33716808]
  44. Crit Rev Biotechnol. 2012 Jun;32(2):143-71 [PMID: 22074402]
  45. Acta Biomater. 2022 Nov;153:557-572 [PMID: 36115654]
  46. J Pept Sci. 2015 Feb;21(2):105-13 [PMID: 25557880]
  47. Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20180384 [PMID: 30905286]
  48. J Med Chem. 2016 Mar 10;59(5):1791-9 [PMID: 26881456]
  49. Nature. 1947 Sep 20;160(4064):407 [PMID: 20263980]
  50. Int J Mol Sci. 2021 Oct 22;22(21): [PMID: 34768832]
  51. Plant Biotechnol J. 2011 Jan;9(1):100-15 [PMID: 20553419]
  52. Dev Comp Immunol. 1985 Summer;9(3):551-8 [PMID: 3840100]
  53. Microorganisms. 2022 Apr 22;10(5): [PMID: 35630326]
  54. Bioinformatics. 2019 Aug 1;35(15):2692-2694 [PMID: 30561507]
  55. Protein Sci. 2020 Jan;29(1):36-42 [PMID: 31441165]
  56. BMC Bioinformatics. 2010 Jan 18;11 Suppl 1:S19 [PMID: 20122190]
  57. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33774670]
  58. Peptides. 2002 Mar;23(3):427-35 [PMID: 11835991]
  59. Biochimie. 2021 Feb;181:42-51 [PMID: 33271197]
  60. Nucleic Acids Res. 2009 Jan;37(Database issue):D963-8 [PMID: 18836196]
  61. Nucleic Acids Res. 2022 Jan 7;50(D1):D488-D496 [PMID: 34390348]
  62. Antibiotics (Basel). 2020 May 10;9(5): [PMID: 32397600]
  63. J Appl Bacteriol. 1992 Dec;73(6):472-9 [PMID: 1490908]
  64. J Pept Sci. 2015 Feb;21(2):71-6 [PMID: 25522354]
  65. Sci Rep. 2020 Oct 9;10(1):16875 [PMID: 33037295]
  66. Front Psychol. 2022 Apr 25;13:814592 [PMID: 35548530]
  67. J Bacteriol. 1991 Dec;173(23):7491-500 [PMID: 1840587]
  68. Front Microbiol. 2022 Apr 11;13:888540 [PMID: 35495692]
  69. Microbiol Mol Biol Rev. 2010 Sep;74(3):417-33 [PMID: 20805405]
  70. Eur J Biochem. 1982 Sep;127(1):219-24 [PMID: 6754375]
  71. Plant J. 2007 Jul;51(2):262-80 [PMID: 17565583]
  72. Nucleic Acids Res. 2010 Jan;38(Database issue):D774-80 [PMID: 19923233]
  73. J Biol Chem. 1992 Mar 5;267(7):4292-5 [PMID: 1537821]
  74. Exp Dermatol. 2017 Nov;26(11):1026-1032 [PMID: 28418601]
  75. Front Cell Infect Microbiol. 2021 May 05;11:638598 [PMID: 34026659]
  76. Acta Biomater. 2022 Jul 1;146:131-144 [PMID: 35470073]
  77. Front Microbiol. 2023 Jan 16;14:1125426 [PMID: 36726373]
  78. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  79. Biotechnol Bioeng. 2014 Jan;111(1):37-49 [PMID: 23860860]
  80. Chem Sci. 2021 Jun 7;12(26):9221-9232 [PMID: 34349895]
  81. Int J Mol Sci. 2021 May 21;22(11): [PMID: 34063982]
  82. Nature. 2005 Oct 13;437(7061):975-80 [PMID: 16222292]
  83. EMBO Rep. 2020 Dec 3;21(12):e51034 [PMID: 33400359]
  84. Biophys J. 2006 Jul 1;91(1):206-16 [PMID: 16603496]
  85. Sci Rep. 2016 Apr 14;6:24482 [PMID: 27075512]
  86. Front Microbiol. 2021 Sep 30;12:725727 [PMID: 34659152]
  87. Protein Sci. 2022 Jan;31(1):92-106 [PMID: 34529321]
  88. Peptides. 2012 Jan;33(1):18-26 [PMID: 22100226]
  89. Phytomedicine. 2021 May;85:153526 [PMID: 33691269]
  90. Front Bioeng Biotechnol. 2020 Dec 03;8:604041 [PMID: 33344436]
  91. Biomolecules. 2018 Jan 19;8(1): [PMID: 29351202]
  92. Nucleic Acids Res. 2014 Jan;42(Database issue):D1154-8 [PMID: 24265220]
  93. Sci Rep. 2020 Oct 6;10(1):16581 [PMID: 33024236]
  94. Nucleic Acids Res. 2019 Jan 8;47(D1):D285-D297 [PMID: 30380085]
  95. Appl Microbiol Biotechnol. 2019 Jul;103(13):5193-5213 [PMID: 31025073]
  96. Mol Pharm. 2009 May-Jun;6(3):996-1005 [PMID: 19341291]

Grants

  1. 31872393/National Natural Science Foundation of China
  2. CAAS-ASTIP-2017-FRI-02/Innovation Program of Agricultural Science and Technology (ASTIP) in CAAS
  3. CAAS-ZDRW202111 and Grant No.CAAS-ZDXT 201808/key projects of Innovation Program of Agricultural Science and Technology (ASTIP) in CAAS

MeSH Term

Antimicrobial Peptides
Anti-Infective Agents
Peptides
Anti-Bacterial Agents
Algorithms

Chemicals

Antimicrobial Peptides
Anti-Infective Agents
Peptides
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0AntimicrobialdatabasesnewAMPPeptidesantimicrobialAMPsDatabasefourAMRpeptidesnumberdesignreviewcharacteristicfunctionacceleratinggrowthresistanceurgentneedagentslowextensivelystudiedalternativesantibioticsATAsCoupledgenerationhigh-throughputtechnologyminingderivativesincreaseddramaticallymanualrunningtime-consuminglaboriousThereforenecessaryestablishcombinecomputeralgorithmssummarizeanalyzealreadyestablishedAPDCollectionCAMPActivityStructureDBAASPdbAMPscomprehensivewidelyusedaimscoverconstructionevolutionpredictionalsooffersideasimprovementapplicationbasedmergingvariousadvantagespeptidelibrariespromotesresearchdevelopmentlaysfoundationfieldsdruggabilityclinicalprecisiontreatmentThinkingConstructionPeptideDatabases:PowerfulToolsMolecularDesignScreeningscreeningmodel

Similar Articles

Cited By