Pan-Plastome of Greater Yam () in China: Intraspecific Genetic Variation, Comparative Genomics, and Phylogenetic Analyses.

Rui-Sen Lu, Ke Hu, Feng-Jiao Zhang, Xiao-Qin Sun, Min Chen, Yan-Mei Zhang
Author Information
  1. Rui-Sen Lu: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ORCID
  2. Ke Hu: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
  3. Feng-Jiao Zhang: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
  4. Xiao-Qin Sun: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ORCID
  5. Min Chen: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
  6. Yan-Mei Zhang: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.

Abstract

L. (Dioscoreaceae), commonly known as greater yam, water yam, or winged yam, is a popular tuber vegetable/food crop worldwide, with nutritional, health, and economical importance. China is an important domestication center of , and hundreds of cultivars (accessions) have been established. However, genetic variations among Chinese accessions remain ambiguous, and genomic resources currently available for the molecular breeding of this species in China are very scarce. In this study, we generated the first pan-plastome of based on 44 Chinese accessions and 8 African accessions, and investigated the genetic variations, plastome evolution, and phylogenetic relationships within and among members of the section . The pan-plastome encoded 113 unique genes and ranged in size from 153,114 to 153,161 bp. A total of four whole-plastome haplotypes (Haps I-IV) were identified in the Chinese accessions, showing no geographical differentiation, while all eight African accessions shared the same whole-plastome haplotype (Hap I). Comparative genomic analyses revealed that all four whole plastome haplotypes harbored identical GC content, gene content, gene order, and IR/SC boundary structures, which were also highly congruent with other species of . In addition, four highly divergent regions, i.e., -, -, -, and exon 3 of were identified as potential DNA barcodes. Phylogenetic analyses clearly separated all the accessions into four distinct clades corresponding to the four haplotypes, and strongly supported that was more closely related to and than , and . Overall, these results not only revealed the genetic variations among Chinese accessions, but also provided the necessary groundwork for molecular-assisted breeding and industrial utilization of this species.

Keywords

References

  1. Bioinformatics. 2015 Oct 15;31(20):3350-2 [PMID: 26099265]
  2. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  3. Genome Biol. 2016 Jun 23;17(1):134 [PMID: 27339192]
  4. BMC Evol Biol. 2008 Jan 31;8:36 [PMID: 18237435]
  5. Biomed Res Int. 2018 Mar 14;2018:6293847 [PMID: 29725599]
  6. Front Plant Sci. 2017 Jan 10;7:2054 [PMID: 28119727]
  7. Am J Bot. 2015 Nov;102(11):1794-813 [PMID: 26507112]
  8. Genome Res. 2003 Apr;13(4):721-31 [PMID: 12654723]
  9. Nucleic Acids Res. 2001 Nov 15;29(22):4633-42 [PMID: 11713313]
  10. PeerJ. 2018 Dec 4;6:e6032 [PMID: 30533315]
  11. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  12. Genome Biol. 2020 Sep 10;21(1):241 [PMID: 32912315]
  13. Bioinformatics. 2017 Aug 15;33(16):2583-2585 [PMID: 28398459]
  14. Bioinformatics. 2000 Nov;16(11):1046-7 [PMID: 11159318]
  15. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  16. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  17. Ecol Evol. 2019 Aug 22;9(18):10843-10853 [PMID: 31624585]
  18. Plant J. 2021 Jul;107(2):579-596 [PMID: 33964091]
  19. Mol Biol Evol. 2008 Jul;25(7):1253-6 [PMID: 18397919]
  20. Nat Commun. 2022 Apr 14;13(1):2001 [PMID: 35422045]
  21. Hortic Res. 2019 Sep 7;6:108 [PMID: 31645963]
  22. New Phytol. 2016 Mar;209(4):1747-56 [PMID: 26574731]
  23. New Phytol. 2017 Apr;214(2):842-851 [PMID: 27991660]
  24. Ann Bot. 2020 Oct 30;126(6):1029-1038 [PMID: 32592585]
  25. Genetics. 1996 Sep;144(1):427-37 [PMID: 8878706]
  26. Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21 [PMID: 21062823]
  27. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  28. Nucleic Acids Res. 2019 Jul 2;47(W1):W59-W64 [PMID: 30949694]
  29. Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:111-140 [PMID: 15012188]
  30. Front Plant Sci. 2012 Nov 08;3:243 [PMID: 23162558]
  31. Theor Appl Genet. 2019 Jun;132(6):1733-1744 [PMID: 30783744]
  32. PLoS One. 2017 Mar 29;12(3):e0174150 [PMID: 28355293]

MeSH Term

Phylogeny
Dioscorea
Genomics
Haplotypes
Genetic Variation

Word Cloud

Created with Highcharts 10.0.0accessionsfourvariationsChineseyamgeneticamongspeciespan-plastomehaplotypesanalyses-ChinagenomicbreedingAfricanplastomephylogenetic153whole-plastomeidentifiedhaplotypeComparativerevealedcontentgenealsohighlyDNAbarcodesPhylogeneticLDioscoreaceaecommonlyknowngreaterwaterwingedpopulartubervegetable/foodcropworldwidenutritionalhealtheconomicalimportanceimportantdomesticationcenterhundredscultivarsestablishedHoweverremainambiguousresourcescurrentlyavailablemolecularscarcestudygeneratedfirstbased448investigatedevolutionrelationshipswithinmemberssectionencoded113uniquegenesrangedsize114161bptotalHapsI-IVshowinggeographicaldifferentiationeightsharedHapwholeharboredidenticalGCorderIR/SCboundarystructurescongruentadditiondivergentregionsieexon3potentialclearlyseparateddistinctcladescorrespondingstronglysupportedcloselyrelatedOverallresultsprovidednecessarygroundworkmolecular-assistedindustrialutilizationPan-PlastomeGreaterYamChina:IntraspecificGeneticVariationGenomicsAnalysesDioscoreaalatacomparativegenomics

Similar Articles

Cited By