Allicin Alleviated LPS-Induced Mastitis via the TLR4/NF-κB Signaling Pathway in Bovine Mammary Epithelial Cells.

Hao-Yu Che, Chang-Hai Zhou, Chen-Chen Lyu, Yu Meng, Yun-Tong He, Hao-Qi Wang, Hong-Yu Wu, Jia-Bao Zhang, Bao Yuan
Author Information
  1. Hao-Yu Che: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
  2. Chang-Hai Zhou: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
  3. Chen-Chen Lyu: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
  4. Yu Meng: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
  5. Yun-Tong He: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
  6. Hao-Qi Wang: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
  7. Hong-Yu Wu: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
  8. Jia-Bao Zhang: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China. ORCID
  9. Bao Yuan: Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China. ORCID

Abstract

Dairy farming is the most important economic activity in animal husbandry. Mastitis is the most common disease in dairy cattle and has a significant impact on milk quality and yield. The natural extract allicin, which is the main active ingredient of the sulfur-containing organic compounds in garlic, has anti-inflammatory, anticancer, antioxidant, and antibacterial properties; however, the specific mechanism underlying its effect on mastitis in dairy cows needs to be determined. Therefore, in this study, whether allicin can reduce lipopolysaccharide (LPS)-induced inflammation in the mammary epithelium of dairy cows was investigated. A cellular model of mammary inflammation was established by pretreating bovine mammary epithelial cells (MAC-T) with 10 µg/mL LPS, and the cultures were then treated with varying concentrations of allicin (0, 1, 2.5, 5, and 7.5 µM) added to the culture medium. MAC-T cells were examined using RT-qPCR and Western blotting to determine the effect of allicin. Subsequently, the level of phosphorylated nuclear factor kappa-B (NF-κB) was measured to further explore the mechanism underlying the effect of allicin on bovine mammary epithelial cell inflammation. Treatment with 2.5 µM allicin considerably decreased the LPS-induced increase in the levels of the inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) and inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in cow mammary epithelial cells. Further research revealed that allicin also inhibited the phosphorylation of inhibitors of nuclear factor kappa-B-α (IκB-α) and NF-κB p65. In mice, LPS-induced mastitis was also ameliorated by allicin. Therefore, we hypothesize that allicin alleviated LPS-induced inflammation in the mammary epithelial cells of cows probably by affecting the TLR4/NF-κB signaling pathway. Allicin will likely become an alternative to antibiotics for the treatment of mastitis in cows.

Keywords

References

  1. Vet Res. 2007 Nov-Dec;38(6):871-82 [PMID: 17903420]
  2. Sci Rep. 2018 Apr 30;8(1):6763 [PMID: 29712980]
  3. Adv Exp Med Biol. 2018;1052:51-61 [PMID: 29785480]
  4. Naunyn Schmiedebergs Arch Pharmacol. 2021 Aug;394(8):1727-1735 [PMID: 34057544]
  5. Aging (Albany NY). 2021 Aug 12;13(15):19460-19474 [PMID: 34383710]
  6. Pharmacol Res. 2022 Mar;177:106118 [PMID: 35134476]
  7. Phytother Res. 2016 Oct;30(10):1658-1664 [PMID: 27335240]
  8. Reprod Domest Anim. 2017 Aug;52 Suppl 3:21-29 [PMID: 28815847]
  9. Vet Q. 2021 Dec;41(1):107-136 [PMID: 33509059]
  10. Nutrients. 2018 Jun 24;10(7): [PMID: 29937536]
  11. Trop Anim Health Prod. 2019 Sep;51(7):2057-2066 [PMID: 31073889]
  12. Phytother Res. 2017 Mar;31(3):459-465 [PMID: 28093813]
  13. J Interferon Cytokine Res. 2017 Feb;37(2):81-89 [PMID: 27845845]
  14. J Anim Sci. 2008 Mar;86(13 Suppl):57-65 [PMID: 17785603]
  15. Hum Pathol. 2016 Aug;54:82-91 [PMID: 27068525]
  16. Trop Anim Health Prod. 2021 Mar 31;53(2):236 [PMID: 33788033]
  17. Biochem Pharmacol. 2017 Jun 1;133:63-73 [PMID: 28087253]
  18. Microbes Infect. 1999 Feb;1(2):125-9 [PMID: 10594976]
  19. Oncotarget. 2017 Aug 16;8(41):71038-71053 [PMID: 29050341]
  20. Eur J Pharmacol. 2020 Jun 5;876:173052 [PMID: 32135124]
  21. J Dairy Sci. 2018 Dec;101(12):10605-10625 [PMID: 30292553]
  22. J Ethnopharmacol. 2021 Jan 10;264:113243 [PMID: 32781258]
  23. Front Pharmacol. 2018 Feb 26;9:142 [PMID: 29535629]
  24. Curr Drug Metab. 2019;20(1):54-64 [PMID: 29788885]
  25. Foods. 2021 Jul 21;10(8): [PMID: 34441457]
  26. Mediators Inflamm. 2015;2015:274314 [PMID: 25960613]
  27. Mini Rev Med Chem. 2017;17(17):1646-1664 [PMID: 28494732]
  28. Mediators Inflamm. 2015;2015:434692 [PMID: 25729217]
  29. Cell Mol Immunol. 2021 Apr;18(4):1045-1057 [PMID: 31551515]
  30. Food Chem Toxicol. 2021 Feb;148:111937 [PMID: 33348049]
  31. J Dairy Sci. 2002 Apr;85(4):947-50 [PMID: 12018440]
  32. Animals (Basel). 2019 Jun 26;9(7): [PMID: 31248033]
  33. Infect Immun. 2003 Mar;71(3):1442-52 [PMID: 12595462]
  34. Front Physiol. 2020 Oct 09;11:587674 [PMID: 33162901]
  35. Int J Biochem Cell Biol. 2015 Dec;69:132-41 [PMID: 26510582]
  36. Anim Health Res Rev. 2015 Dec;16(2):135-49 [PMID: 26303748]
  37. Int J Clin Exp Med. 2015 Nov 15;8(11):20573-80 [PMID: 26884975]
  38. Molecules. 2014 Aug 19;19(8):12591-618 [PMID: 25153873]
  39. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4844-9 [PMID: 10781090]
  40. Nutr Res Rev. 2020 Dec;33(2):218-234 [PMID: 32100670]
  41. FEMS Microbiol Lett. 2010 Feb;303(2):183-9 [PMID: 20030729]
  42. Int Immunopharmacol. 2015 Dec;29(2):263-268 [PMID: 26590117]
  43. Acta Pharmacol Sin. 2017 Feb;38(2):211-222 [PMID: 27890916]
  44. Animals (Basel). 2022 Sep 02;12(17): [PMID: 36078001]
  45. Biomed Pharmacother. 2021 Oct;142:112077 [PMID: 34426252]
  46. Nat Rev Immunol. 2002 Oct;2(10):725-34 [PMID: 12360211]
  47. Br J Pharmacol. 2020 Apr;177(8):1806-1821 [PMID: 31758699]
  48. Inflammation. 2015;38(3):1142-50 [PMID: 25487780]
  49. PLoS One. 2009 Oct 19;4(10):e7499 [PMID: 19838303]
  50. Med Sci Monit. 2019 Apr 08;25:2567-2576 [PMID: 30957795]
  51. Front Microbiol. 2014 May 13;5:217 [PMID: 24860564]
  52. PeerJ. 2021 Aug 10;9:e11934 [PMID: 34434661]
  53. Nat Rev Cancer. 2009 May;9(5):361-71 [PMID: 19343034]
  54. Vet Clin North Am Food Anim Pract. 2012 Jul;28(2):165-85 [PMID: 22664201]
  55. Biomed Pharmacother. 2018 Mar;99:245-252 [PMID: 29334668]
  56. Anticancer Agents Med Chem. 2014 Feb;14(2):233-40 [PMID: 24237225]
  57. Br Poult Sci. 2015;56(6):716-22 [PMID: 26445200]

Grants

  1. CARS-37/the earmarked fund for China Agriculture Research System
  2. U20A2053/National Natural Science Foundation of China

MeSH Term

Animals
Cattle
Female
Mice
Disulfides
Epithelial Cells
Inflammation
Interleukin-6
Lipopolysaccharides
Mastitis, Bovine
NF-kappa B
Signal Transduction
Sulfinic Acids
Toll-Like Receptor 4

Chemicals

allicin
Disulfides
Interleukin-6
Lipopolysaccharides
NF-kappa B
Sulfinic Acids
TLR4 protein, human
Tlr4 protein, mouse
Toll-Like Receptor 4

Word Cloud

Created with Highcharts 10.0.0allicinmammarymastitiscowsinflammationepithelialcells5dairyeffectMAC-TNF-κBLPS-inducedMastitismechanismunderlyingThereforeLPSbovine2µMnuclearfactorinhibitedNLRP3alsoTLR4/NF-κBAllicinDairyfarmingimportanteconomicactivityanimalhusbandrycommondiseasecattlesignificantimpactmilkqualityyieldnaturalextractmainactiveingredientsulfur-containingorganiccompoundsgarlicanti-inflammatoryanticancerantioxidantantibacterialpropertieshoweverspecificneedsdeterminedstudywhethercanreducelipopolysaccharide-inducedepitheliuminvestigatedcellularmodelestablishedpretreating10µg/mLculturestreatedvaryingconcentrations017addedculturemediumexaminedusingRT-qPCRWesternblottingdetermineSubsequentlylevelphosphorylatedkappa-BmeasuredexplorecellTreatmentconsiderablydecreasedincreaselevelsinflammatorycytokinesinterleukin-1βIL-1βinterleukin-6IL-6interleukin-8IL-8tumornecrosisfactor-αTNF-αactivationNOD-likereceptorprotein3inflammasomecowresearchrevealedphosphorylationinhibitorskappa-B-αIκB-αp65miceamelioratedhypothesizealleviatedprobablyaffectingsignalingpathwaywilllikelybecomealternativeantibioticstreatmentAlleviatedLPS-InducedviaSignalingPathwayBovineMammaryEpithelialCellsanti-inflammation

Similar Articles

Cited By