Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes.

Aleksandra Ziółkowska, Maciej Witwicki
Author Information
  1. Aleksandra Ziółkowska: Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
  2. Maciej Witwicki: Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-283 Wroclaw, Poland. ORCID

Abstract

The exchange coupling, represented by the parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.

Keywords

References

  1. Science. 2017 Jan 6;355(6320):49-52 [PMID: 28059761]
  2. Int J Mol Sci. 2022 Nov 21;23(22): [PMID: 36430975]
  3. J Chem Phys. 2009 Apr 28;130(16):164106 [PMID: 19405560]
  4. Inorg Chem. 2009 Nov 2;48(21):10281-8 [PMID: 19795871]
  5. Dalton Trans. 2010 May 28;39(20):4959-67 [PMID: 20419188]
  6. Phytochemistry. 2022 Sep 20;204:113442 [PMID: 36150528]
  7. Inorg Chem. 2001 Dec 17;40(26):6802-12 [PMID: 11735494]
  8. Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202205735 [PMID: 36103607]
  9. Dalton Trans. 2019 Jun 21;48(23):8418-8426 [PMID: 31115414]
  10. J Phys Chem B. 2010 Jun 10;114(22):7692-702 [PMID: 20469875]
  11. J Chem Theory Comput. 2018 Jan 9;14(1):166-179 [PMID: 29211960]
  12. Int J Mol Sci. 2022 Nov 08;23(22): [PMID: 36430173]
  13. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13105-10 [PMID: 15340147]
  14. Dalton Trans. 2009 May 7;(17):3153-61 [PMID: 19421617]
  15. Molecules. 2021 Sep 15;26(18): [PMID: 34577066]
  16. Int J Mol Sci. 2022 Oct 03;23(19): [PMID: 36233027]
  17. Inorg Chem. 2001 May 7;40(10):2434-6 [PMID: 11327926]
  18. J Chem Phys. 2020 Jun 14;152(22):224108 [PMID: 32534543]
  19. Phys Chem Chem Phys. 2011 Jul 14;13(26):12314-20 [PMID: 21647490]
  20. Phys Rev Lett. 2003 Oct 3;91(14):146401 [PMID: 14611541]
  21. Inorg Chem. 2011 Oct 17;50(20):9816-25 [PMID: 21696132]
  22. Food Chem. 2017 Mar 1;218:144-151 [PMID: 27719890]
  23. Inorg Chem. 2022 Apr 25;61(16):6008-6016 [PMID: 35414172]
  24. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 [PMID: 9944570]
  25. Inorg Chem. 2009 Aug 3;48(15):7251-60 [PMID: 19722694]
  26. J Chem Theory Comput. 2019 Feb 12;15(2):938-948 [PMID: 30645093]
  27. Chemphyschem. 2015 Jun 22;16(9):1912-25 [PMID: 25873130]
  28. Inorg Chem. 2018 Oct 15;57(20):12769-12776 [PMID: 30256625]
  29. J Chem Theory Comput. 2013 Aug 13;9(8):3429-36 [PMID: 26584098]
  30. Chem Rev. 1998 Apr 2;98(2):705-762 [PMID: 11848913]
  31. J Am Chem Soc. 2008 Nov 19;130(46):15448-59 [PMID: 18939830]
  32. Chem Rev. 2003 Jun;103(6):2347-63 [PMID: 12797833]
  33. Int J Mol Sci. 2022 Oct 18;23(20): [PMID: 36293296]
  34. Molecules. 2019 Mar 19;24(6): [PMID: 30893883]
  35. Inorg Chem. 2015 Nov 16;54(22):10801-10 [PMID: 26492153]
  36. J Am Chem Soc. 2007 Aug 29;129(34):10512-21 [PMID: 17676737]
  37. J Chem Phys. 2010 Apr 21;132(15):154104 [PMID: 20423165]
  38. Inorg Chem. 2011 Jul 4;50(13):6229-36 [PMID: 21634387]
  39. Phys Chem Chem Phys. 2015 Jun 14;17(22):14375-82 [PMID: 25690644]
  40. Inorg Chem. 2012 Jul 2;51(13):7112-8 [PMID: 22691047]
  41. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):171-9 [PMID: 27048719]
  42. Int J Mol Sci. 2022 Nov 25;23(23): [PMID: 36499046]
  43. Inorg Chem. 2018 Aug 20;57(16):9708-9719 [PMID: 29616807]
  44. J Comput Chem. 2008 Jan 30;29(2):167-75 [PMID: 17568435]
  45. Dalton Trans. 2011 Nov 7;40(41):10897-906 [PMID: 21842095]
  46. Inorg Chem. 2011 Oct 17;50(20):9752-65 [PMID: 21744793]
  47. Nature. 1991 Jan 17;349(6306):262-4 [PMID: 1846226]
  48. Dalton Trans. 2015 May 21;44(19):8876-88 [PMID: 25871579]
  49. J Am Chem Soc. 2003 Jan 29;125(4):1041-55 [PMID: 12537504]
  50. J Am Chem Soc. 2001 Mar 14;123(10):2213-23 [PMID: 11456867]
  51. Int J Mol Sci. 2021 Jul 27;22(15): [PMID: 34360806]
  52. Chemistry. 2017 Jul 26;23(42):10110-10125 [PMID: 28498623]
  53. Phys Chem Chem Phys. 2021 Aug 28;23(32):17408-17419 [PMID: 34351330]
  54. J Am Chem Soc. 2006 Aug 9;128(31):10213-22 [PMID: 16881651]
  55. Chem Commun (Camb). 2020 Apr 21;56(32):4400-4403 [PMID: 32242582]
  56. Magn Reson Chem. 2004 Oct;42 Spec no:S187-98 [PMID: 15366053]
  57. Dalton Trans. 2022 Jun 27;51(25):9780-9792 [PMID: 35704920]
  58. Int J Mol Sci. 2022 Nov 22;23(23): [PMID: 36498860]
  59. J Comput Chem. 2011 Jan 15;32(1):174-82 [PMID: 20607691]
  60. Molecules. 2010 Jan 04;15(1):150-63 [PMID: 20110880]
  61. J Cheminform. 2012 Aug 13;4(1):17 [PMID: 22889332]
  62. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 [PMID: 16240044]
  63. Molecules. 2022 Aug 02;27(15): [PMID: 35956880]
  64. Chem Sci. 2020 Jul 21;11(31):8196-8203 [PMID: 34123090]
  65. Inorg Chem. 2016 Mar 21;55(6):2870-81 [PMID: 26930424]
  66. Inorg Chem. 2017 Jun 19;56(12):6788-6801 [PMID: 28558238]
  67. Dalton Trans. 2021 May 18;50(19):6620-6630 [PMID: 33900333]
  68. Phys Chem Chem Phys. 2022 Feb 16;24(7):4407-4414 [PMID: 35112680]
  69. J Mol Model. 2019 Dec 13;26(1):10 [PMID: 31834497]
  70. Int J Mol Sci. 2022 Nov 02;23(21): [PMID: 36362159]
  71. Chem Rev. 2014 Jan 8;114(1):429-92 [PMID: 24102410]
  72. J Chem Theory Comput. 2022 Mar 8;18(3):1437-1457 [PMID: 35167749]
  73. Int J Mol Sci. 2022 Sep 29;23(19): [PMID: 36232809]
  74. J Comput Chem. 2019 May 30;40(14):1463-1470 [PMID: 30801743]
  75. Environ Sci Technol. 2017 Dec 19;51(24):14124-14134 [PMID: 29171253]
  76. J Phys Chem A. 2009 Dec 24;113(51):14115-22 [PMID: 19928890]
  77. Inorg Chem. 2001 Jan 15;40(2):408-11 [PMID: 11170550]

Grants

  1. "Excellence initiative - research university" for years 2020-2026 for University of Wrocław/University of Wrocław
  2. 47/Wrocław Centre for Networking and Supercomputing

MeSH Term

Ligands
Copper
Magnetics
Ions

Chemicals

Ligands
Copper
Ions

Word Cloud

Created with Highcharts 10.0.0magneticexchangeinteractionIIcouplingDFTcomplexesCuunderstandingsystemstheoreticalstudiesradicalligandssemiquinonecanrepresentedparametertremendousimportancereactivitybehavioropen-shellmolecularpastsubjectinvestigationsmostlylimitedmetalliccentersparamagneticmetalionshithertoreceivedscantattentionthusfactorsgoverninglackingpaperuseCASSCFCASSCF/NEVPT2DDCI3methodsprovideinsightsemiquinonatocopperprimaryobjectiveidentifystructuralfeaturesaffectdemonstratecharacter-semiquinonemainlydeterminedrelativepositionligandionresultssupportexperimentalinterpretationdatasimilarusedin-silicodesignUnderstandingExchangeInteractionParamagneticMetalIonsRadicalLigands:AbInitioStudySemiquinonatoComplexesabinitioantiferromagnetismbrokensymmetryferromagnetismradicals

Similar Articles

Cited By