Two Strains of Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress.

Yuan Guo, Qi Gao, Yangyang Fan, Shuang Song, Dong Yan, Jing Zhao, Yulin Chen, Yu Liu, Shouxian Wang
Author Information
  1. Yuan Guo: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. ORCID
  2. Qi Gao: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  3. Yangyang Fan: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. ORCID
  4. Shuang Song: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  5. Dong Yan: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  6. Jing Zhao: College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China.
  7. Yulin Chen: College of Agriculture and Food Engineering, Baise University, Baise 533000, China.
  8. Yu Liu: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  9. Shouxian Wang: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

Abstract

Temperature type is one of the key traits determining the cultivation regime of . However, the molecular and metabolic basis underling temperature type remain unclear. Here, we investigated the phenotypic, transcriptomic, and metabolic features of with different temperature types under both control (25 °C) and high (37 °C) temperature conditions. We found that under the control condition, the high- and low-temperature types of harbored distinct transcriptional and metabolic profiles. The high-temperature (H-)-type strain had a higher expression level of genes involved in the toxin processes and carbohydrate binding, while the low-temperature (L-)-type strain had a high expression level of oxidoreductase activity. Heat stress significantly inhibited the growth of both H- and L-type strains, while the latter had a higher growth inhibition rate. Upon exposure to heat, the H-type strain significantly up-regulated genes associated with the components of the cellular membrane, whereas the L-type strain markedly up-regulated genes involved in the extracellular region and carbohydrate binding. Metabolome data showed that thermostress altered purine and pyrimidine metabolism in the H-type strain, whereas it altered cysteine, methionine, and glycerophospholipid metabolism in the L-type strain. Transcriptome and metabolome integrative analysis was able to identify three independent thermotolerance-related gene-metabolite regulatory networks. Our results deepen the current understanding of the molecular and metabolic basis underlying temperature type and suggest, for the first time, that thermotolerance mechanisms can be temperature-type-dependent for .

Keywords

References

  1. Appl Environ Microbiol. 2016 Jun 30;82(14):4112-4125 [PMID: 27129961]
  2. Appl Microbiol Biotechnol. 2007 Feb;74(1):140-5 [PMID: 17186239]
  3. Mol Biosyst. 2015 Jan;11(1):13-9 [PMID: 25382277]
  4. Appl Microbiol Biotechnol. 2018 Aug;102(15):6627-6636 [PMID: 29846777]
  5. J Adv Res. 2021 Sep 28;38:91-106 [PMID: 35572413]
  6. Ecol Evol. 2021 Jul 05;11(15):10538-10546 [PMID: 34367595]
  7. Nat Rev Genet. 2018 Jun;19(6):385-397 [PMID: 29556092]
  8. Gene. 2018 Jun 30;661:139-151 [PMID: 29605602]
  9. BMC Genomics. 2022 Feb 10;23(1):120 [PMID: 35144543]
  10. Sci Rep. 2021 May 10;11(1):9845 [PMID: 33972587]
  11. Cell Physiol Biochem. 2018;50(5):1617-1637 [PMID: 30384356]
  12. Nat Microbiol. 2022 Jun;7(6):780-795 [PMID: 35577971]
  13. Ann Clin Microbiol Antimicrob. 2015 Feb 07;14:8 [PMID: 25858107]
  14. Biomed Res Int. 2018 Jun 11;2018:1670328 [PMID: 29992134]
  15. Front Microbiol. 2022 Nov 17;13:1009885 [PMID: 36478857]
  16. PLoS One. 2020 Mar 27;15(3):e0230680 [PMID: 32218597]
  17. Fungal Genet Biol. 2018 Sep;118:37-44 [PMID: 30003956]
  18. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  19. Front Microbiol. 2022 Jun 20;13:910255 [PMID: 35801117]
  20. Front Microbiol. 2017 Feb 17;8:237 [PMID: 28261189]
  21. Environ Microbiol. 2017 Feb;19(2):566-583 [PMID: 27554678]
  22. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  23. Biomed Res Int. 2016;2016:5837293 [PMID: 27868065]
  24. Front Microbiol. 2020 May 27;11:1044 [PMID: 32536907]
  25. Front Microbiol. 2020 Apr 17;11:707 [PMID: 32362887]
  26. Front Microbiol. 2020 Jan 21;10:3148 [PMID: 32038581]
  27. Anal Chem. 2018 Jan 2;90(1):480-489 [PMID: 29039932]
  28. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  29. PLoS Comput Biol. 2017 Nov 3;13(11):e1005752 [PMID: 29099853]
  30. Environ Microbiol. 2014 Jun;16(6):1709-28 [PMID: 24238263]
  31. Appl Microbiol Biotechnol. 2021 Oct;105(20):7567-7576 [PMID: 34536103]
  32. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  33. Stat Appl Genet Mol Biol. 2008;7(1):Article 35 [PMID: 19049491]
  34. Biomolecules. 2021 Nov 08;11(11): [PMID: 34827654]
  35. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  36. Fungal Genet Biol. 2012 Jan;49(1):15-20 [PMID: 22202810]
  37. Int J Mol Sci. 2019 May 10;20(9): [PMID: 31083449]
  38. Plant Pathol J. 2015 Dec;31(4):323-33 [PMID: 26676169]
  39. Biotechniques. 2007 Jul;43(1 Suppl):25-30 [PMID: 17936939]
  40. Curr Metabolomics. 2013;1(1):92-107 [PMID: 26078916]
  41. Mikrobiologiia. 2005 May-Jun;74(3):293-304 [PMID: 16119841]

Grants

  1. CARS-20/Ministry of Agriculture and Rural Affairs

Word Cloud

Created with Highcharts 10.0.0straintemperaturetypemetabolicgenesL-typemolecularbasistypescontrol°Chighlow-temperatureH--typehigherexpressionlevelinvolvedcarbohydratebindingstresssignificantlygrowthheatH-typeup-regulatedwhereasalteredmetabolismmetabolomeTemperatureonekeytraitsdeterminingcultivationregimeHoweverunderlingremainunclearinvestigatedphenotypictranscriptomicfeaturesdifferent2537conditionsfoundconditionhigh-harboreddistincttranscriptionalprofileshigh-temperaturetoxinprocessesL-oxidoreductaseactivityHeatinhibitedstrainslatterinhibitionrateUponexposureassociatedcomponentscellularmembranemarkedlyextracellularregionMetabolomedatashowedthermostresspurinepyrimidinecysteinemethionineglycerophospholipidTranscriptomeintegrativeanalysisableidentifythreeindependentthermotolerance-relatedgene-metaboliteregulatorynetworksresultsdeepencurrentunderstandingunderlyingsuggestfirsttimethermotolerancemechanismscantemperature-type-dependentTwoStrainsDifferTranscriptionalMetabolicPatternsRespondDifferentlyThermostressLentinulaedodesmulti-omicstranscriptome

Similar Articles

Cited By