Dermatophytic Biofilms: Characteristics, Significance and Treatment Approaches.

Anthi-Marina Markantonatou, Konstantinos Samaras, Timoleon-Achilleas Vyzantiadis
Author Information
  1. Anthi-Marina Markantonatou: Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
  2. Konstantinos Samaras: Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
  3. Timoleon-Achilleas Vyzantiadis: Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece. ORCID

Abstract

Microbes are found in the environment, possibly more often as biofilms than in planktonic forms. Biofilm formation has been described for several important fungal species. The presence of a dermatophytoma in a dermatophytic nail infection was the basis for the proposal that dermatophytes form biofilms as well. This could explain treatment failure and recurrent dermatophytic infections. Several investigators have performed in vitro and ex vivo experiments to study the formation of biofilms by dermatophytes and their properties. The nature of the biofilm structure itself contributes to fungal protection mechanisms against many harmful external agents, including antifungals. Thus, a different approach should be carried out regarding susceptibility testing and treatment. Concerning susceptibility testing, methods to evaluate either the inhibition of biofilm formation, or the ability to eradicate it, have been introduced. As for treatment, in addition to classical antifungal agents, some natural formulations, such as plant extracts or biosurfactants, and alternative approaches, such as photodynamic therapy, have been proposed. Studies that connect the results of the in vitro and ex vivo experimentation with clinical outcomes are required in order to verify the efficacy of these approaches in clinical practice.

Keywords

References

  1. Mycopathologia. 2017 Feb;182(1-2):5-31 [PMID: 27783317]
  2. Med Mycol. 2007 Sep;45(6):525-33 [PMID: 17710622]
  3. Microorganisms. 2020 Feb 09;8(2): [PMID: 32050410]
  4. Front Microbiol. 2020 Jun 05;11:1154 [PMID: 32582096]
  5. Crit Rev Microbiol. 2017 May;43(3):313-351 [PMID: 27868469]
  6. Microbiology (Reading). 2021 Feb;167(2): [PMID: 33427606]
  7. J Agric Food Chem. 2012 Jun 20;60(24):6150-6 [PMID: 22640226]
  8. Eukaryot Cell. 2004 Apr;3(2):536-45 [PMID: 15075282]
  9. Mycopathologia. 2012 Dec;174(5-6):467-74 [PMID: 22864604]
  10. J Med Chem. 2017 Mar 23;60(6):2193-2211 [PMID: 28051303]
  11. Crit Rev Microbiol. 2009;35(4):340-55 [PMID: 19863383]
  12. J Am Acad Dermatol. 2002 Oct;47(4):629-31 [PMID: 12271316]
  13. Appl Environ Microbiol. 2011 Jun;77(11):3892-5 [PMID: 21498764]
  14. Biofouling. 2014;30(6):719-27 [PMID: 24856309]
  15. Biofouling. 2020 Aug;36(7):783-791 [PMID: 32842796]
  16. Emerg Infect Dis. 2002 Apr;8(4):376-9 [PMID: 11971770]
  17. Antimicrob Agents Chemother. 2011 Dec;55(12):5710-7 [PMID: 21930868]
  18. Nat Rev Microbiol. 2011 Feb;9(2):109-18 [PMID: 21189476]
  19. Antimicrob Agents Chemother. 2006 Nov;50(11):3839-46 [PMID: 16923951]
  20. BMC Microbiol. 2008 Oct 08;8:173 [PMID: 18842140]
  21. Antimicrob Agents Chemother. 2009 Mar;53(3):1204-9 [PMID: 19064900]
  22. Annu Rev Microbiol. 2010;64:357-72 [PMID: 20528688]
  23. Indian Dermatol Online J. 2016 Mar-Apr;7(2):73-6 [PMID: 27057485]
  24. Antimicrob Agents Chemother. 2015;59(6):3675-82 [PMID: 25870071]
  25. Clin Microbiol Infect. 2021 Jan;27(1):55-60 [PMID: 32916260]
  26. Front Immunol. 2018 Jan 10;8:1968 [PMID: 29375581]
  27. Iran J Microbiol. 2011 Mar;3(1):1-12 [PMID: 22347576]
  28. Colloids Surf B Biointerfaces. 2019 Dec 1;184:110540 [PMID: 31610418]
  29. Appl Environ Microbiol. 2007 Jul;73(14):4592-601 [PMID: 17513597]
  30. Front Microbiol. 2020 Jul 14;11:1593 [PMID: 32760372]
  31. Front Microbiol. 2020 Mar 12;11:329 [PMID: 32226417]
  32. Wound Repair Regen. 2008 Jan-Feb;16(1):37-44 [PMID: 18086294]
  33. Biofouling. 2011 Aug;27(7):701-10 [PMID: 21732715]
  34. Open Microbiol J. 2011;5:21-31 [PMID: 21760865]
  35. Mycoses. 2018 Jul;61(7):449-454 [PMID: 29517824]
  36. N Engl J Med. 2013 Oct 31;369(18):1704-1714 [PMID: 24131138]
  37. Front Microbiol. 2019 Jun 07;10:1228 [PMID: 31231330]
  38. Microbiology (Reading). 2001 Jan;147(Pt 1):3-9 [PMID: 11160795]
  39. Adv Wound Care (New Rochelle). 2015 Jul 1;4(7):373-381 [PMID: 26155379]
  40. J Fungi (Basel). 2021 Aug 03;7(8): [PMID: 34436168]
  41. Mycoses. 2012 May;55(3):218-23 [PMID: 21831104]
  42. Antimicrob Agents Chemother. 2006 Oct;50(10):3269-76 [PMID: 17005804]
  43. Biofouling. 2019 Apr;35(4):392-400 [PMID: 31155952]
  44. J Infect Dis. 2009 Jul 15;200(2):307-13 [PMID: 19527170]
  45. Nat Rev Microbiol. 2010 Sep;8(9):623-33 [PMID: 20676145]
  46. Biomed Res Int. 2013;2013:150653 [PMID: 23509680]
  47. Sci Rep. 2016 Nov 29;6:37867 [PMID: 27897199]
  48. Front Microbiol. 2015 Aug 04;6:801 [PMID: 26300867]
  49. Int J Dermatol. 2023 Jan;62(1):120-127 [PMID: 35780324]
  50. Biofouling. 2022 Mar;38(3):286-297 [PMID: 35450473]
  51. Mycoses. 2016 Nov;59(11):710-719 [PMID: 27291045]
  52. Front Cell Infect Microbiol. 2021 May 13;11:679470 [PMID: 34055673]
  53. Front Microbiol. 2018 Apr 25;9:779 [PMID: 29922236]
  54. Eukaryot Cell. 2009 Feb;8(2):197-206 [PMID: 18820078]
  55. Med Oral Patol Oral Cir Bucal. 2012 Sep 01;17(5):e902-6 [PMID: 22549691]
  56. Mycoses. 2018 Feb;61(2):79-87 [PMID: 28940733]
  57. J Med Microbiol. 2017 Jul;66(7):1045-1052 [PMID: 28708048]
  58. APMIS. 2006 Feb;114(2):131-8 [PMID: 16519750]
  59. J Ethnopharmacol. 2019 Sep 15;241:111956 [PMID: 31129309]
  60. J Dermatolog Treat. 2018 Mar;29(2):202-207 [PMID: 28749746]
  61. Arch Oral Biol. 2012 Apr;57(4):364-8 [PMID: 21958970]
  62. Skin Therapy Lett. 2012 Jul;17(7):1-5 [PMID: 22825648]
  63. Skin Appendage Disord. 2018 Aug;4(3):136-140 [PMID: 30197888]
  64. Lasers Med Sci. 2012 Nov;27(6):1205-12 [PMID: 22278349]
  65. Microb Cell. 2018 Jun 14;5(7):300-326 [PMID: 29992128]
  66. Med Mycol. 2021 Apr 6;59(4):313-326 [PMID: 33418566]
  67. Biotechnol Rep (Amst). 2020 Aug 19;27:e00516 [PMID: 32884912]
  68. Int J Mol Sci. 2011 Jan 21;12(1):817-28 [PMID: 21340015]
  69. J Fungi (Basel). 2022 Jul 21;8(7): [PMID: 35887512]
  70. Trends Microbiol. 2001 May;9(5):222-7 [PMID: 11336839]
  71. J Fungi (Basel). 2022 Aug 03;8(8): [PMID: 36012803]
  72. Mycoses. 2012 Jan;55(1):80-5 [PMID: 21668524]
  73. Eukaryot Cell. 2012 Jan;11(1):68-78 [PMID: 21724936]
  74. J Infect Dis. 2010 Jul 1;202(1):171-5 [PMID: 20497051]
  75. Saudi J Biol Sci. 2017 Feb;24(2):331-337 [PMID: 28149170]

Word Cloud

Created with Highcharts 10.0.0biofilmsformationdermatophyticdermatophytestreatmentsusceptibilitytestingfungalinfectionsvitroexvivobiofilmagentsantifungalapproachesclinicalMicrobesfoundenvironmentpossiblyoftenplanktonicformsBiofilmdescribedseveralimportantspeciespresencedermatophytomanailinfectionbasisproposalformwellexplainfailurerecurrentSeveralinvestigatorsperformedexperimentsstudypropertiesnaturestructurecontributesprotectionmechanismsmanyharmfulexternalincludingantifungalsThusdifferentapproachcarriedregardingConcerningmethodsevaluateeitherinhibitionabilityeradicateintroducedadditionclassicalnaturalformulationsplantextractsbiosurfactantsalternativephotodynamictherapyproposedStudiesconnectresultsexperimentationoutcomesrequiredorderverifyefficacypracticeDermatophyticBiofilms:CharacteristicsSignificanceTreatmentApproaches

Similar Articles

Cited By