Flow-Based Fmoc-SPPS Preparation and SAR Study of Cathelicidin-PY Reveals Selective Antimicrobial Activity.

Shama Dissanayake, Junming He, Sung H Yang, Margaret A Brimble, Paul W R Harris, Alan J Cameron
Author Information
  1. Shama Dissanayake: School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand.
  2. Junming He: School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand.
  3. Sung H Yang: School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand.
  4. Margaret A Brimble: School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand. ORCID
  5. Paul W R Harris: School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand.
  6. Alan J Cameron: School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand. ORCID

Abstract

Antimicrobial peptides (AMPs) hold promise as novel therapeutics in the fight against multi-drug-resistant pathogens. Cathelicidin-PY (NH-RKCNFLCKLKEKLRTVITSHIDKVLRPQG-COOH) is a 29-residue disulfide-cyclised antimicrobial peptide secreted as an innate host defence mechanism by the frog (PY) and reported to possess broad-spectrum antibacterial and antifungal properties, exhibiting low cytotoxic and low hemolytic activity. Herein, we detail the total synthesis of cathelicidin-PY using an entirely on-resin synthesis, including assembly of the linear sequence by rapid flow Fmoc-SPPS and iodine-mediated disulfide bridge formation. By optimising a synthetic strategy to prepare cathelicidin-PY, this strategy was subsequently adapted to prepare a bicyclic head-to-tail cyclised derivative of cathelicidin-PY. The structure-activity relationship (SAR) of cathelicidin-PY with respect to the -terminally positioned disulfide was further probed by preparing an alanine-substituted linear analogue and a series of lactam-bridged peptidomimetics implementing side chain to side chain cyclisation. The analogues were investigated for antimicrobial activity, secondary structure by circular dichroism (CD), and stability in human serum. Surprisingly, the disulfide bridge emerged as non-essential to antimicrobial activity and secondary structure but was amenable to synthetic modification. Furthermore, the synthetic AMP and multiple analogues demonstrated selective activity towards Gram-negative pathogen in physiologically relevant concentrations of divalent cations.

Keywords

References

  1. BMC Res Notes. 2016 Jan 05;9:11 [PMID: 26732674]
  2. J Microbiol. 2018 Feb;56(2):128-137 [PMID: 29392557]
  3. Sci Rep. 2016 Sep 14;6:32948 [PMID: 27624595]
  4. Biochim Biophys Acta. 2006 Sep;1758(9):1436-49 [PMID: 16678118]
  5. Chem Biol. 2010 Sep 24;17(9):970-80 [PMID: 20851346]
  6. Antibiotics (Basel). 2020 Jul 17;9(7): [PMID: 32708925]
  7. Pathog Glob Health. 2016 Jun-Jul;110(4-5):137-47 [PMID: 27315342]
  8. Sci Rep. 2017 Jan 19;7:40874 [PMID: 28102367]
  9. Chem Soc Rev. 2012 Mar 7;41(5):1826-44 [PMID: 22012213]
  10. J Antimicrob Chemother. 2006 Nov;58(5):950-9 [PMID: 17023499]
  11. Biochimie. 2021 Dec;191:37-50 [PMID: 34438004]
  12. Peptides. 2017 Sep;95:76-83 [PMID: 28764966]
  13. J Allergy Clin Immunol. 1999 Dec;104(6):1131-8 [PMID: 10588992]
  14. ChemistryOpen. 2020 Apr 03;9(4):431-441 [PMID: 32257751]
  15. Front Microbiol. 2020 Feb 21;11:168 [PMID: 32153522]
  16. Zool Res. 2019 Mar 18;40(2):94-101 [PMID: 30127328]
  17. Drug Discov Today. 2021 Sep;26(9):2198-2203 [PMID: 34329771]
  18. Annu Rev Immunol. 1995;13:61-92 [PMID: 7612236]
  19. Methods Mol Biol. 2011;716:73-88 [PMID: 21318901]
  20. Microbiologyopen. 2022 Feb;11(1):e1260 [PMID: 35212478]
  21. Biotechnol Lett. 2005 Sep;27(18):1337-47 [PMID: 16215847]
  22. Amino Acids. 2012 Aug;43(2):677-85 [PMID: 22009138]
  23. J Pept Res. 2002 Aug;60(2):95-103 [PMID: 12102722]
  24. Infect Immun. 2014 Nov;82(11):4496-507 [PMID: 25114115]
  25. Infect Immun. 1989 Oct;57(10):3142-6 [PMID: 2777377]
  26. Nat Chem Biol. 2017 May;13(5):464-466 [PMID: 28244989]
  27. Protein Sci. 2001 Dec;10(12):2470-9 [PMID: 11714914]
  28. Org Lett. 2012 Oct 19;14(20):5218-21 [PMID: 23025410]
  29. Hepatol Res. 2016 Aug;46(9):924-32 [PMID: 26606891]
  30. Methods Enzymol. 1995;252:199-208 [PMID: 7476354]
  31. Curr Pharm Des. 2002;8(9):779-93 [PMID: 11945171]
  32. Transl Vis Sci Technol. 2014 May 29;3(3):4 [PMID: 24932432]
  33. Vet Microbiol. 2014 Jul 16;171(3-4):273-8 [PMID: 24646601]
  34. Molecules. 2018 Nov 05;23(11): [PMID: 30400576]
  35. Chembiochem. 2014 Mar 21;15(5):713-20 [PMID: 24616230]
  36. Cent Eur J Immunol. 2015;40(2):225-35 [PMID: 26557038]
  37. Org Lett. 2004 Apr 1;6(7):1127-9 [PMID: 15040739]
  38. AMB Express. 2021 Aug 16;11(1):116 [PMID: 34398323]
  39. Curr Opin Microbiol. 2019 Oct;51:72-80 [PMID: 31733401]
  40. PLoS One. 2014 Mar 27;9(3):e93216 [PMID: 24675879]
  41. Front Microbiol. 2019 Sep 19;10:2190 [PMID: 31608030]
  42. Gene. 2015 Oct 25;571(2):172-7 [PMID: 26091834]
  43. Gut Pathog. 2020 Nov 13;12(1):53 [PMID: 33292444]
  44. J Leukoc Biol. 2014 Nov;96(5):931-8 [PMID: 25082153]
  45. ACS Cent Sci. 2020 Dec 23;6(12):2277-2286 [PMID: 33376788]
  46. Eur J Biochem. 1992 Oct 15;209(2):589-95 [PMID: 1425666]
  47. J Invest Dermatol. 2012 Mar;132(3 Pt 2):887-95 [PMID: 22158560]
  48. FASEB J. 2014 Sep;28(9):3919-29 [PMID: 24868009]
  49. Curr HIV Res. 2007 Jul;5(4):410-5 [PMID: 17627504]
  50. Amino Acids. 2017 Sep;49(9):1571-1585 [PMID: 28593346]
  51. Elife. 2021 Apr 20;10: [PMID: 33875135]
  52. Biomedicines. 2020 Nov 16;8(11): [PMID: 33207631]
  53. Curr Infect Dis Rep. 2018 Mar 6;20(2):3 [PMID: 29511909]
  54. Antimicrob Agents Chemother. 2017 Aug 24;61(9): [PMID: 28630199]
  55. Genet Mol Res. 2016 Aug 05;15(3): [PMID: 27525920]
  56. FEBS J. 2013 Dec;280(23):6022-32 [PMID: 24028327]
  57. Biochemistry. 2004 Jul 20;43(28):9140-50 [PMID: 15248771]
  58. J Org Chem. 1997 Jun 27;62(13):4307-4312 [PMID: 11671751]
  59. Sci Rep. 2018 Oct 23;8(1):15906 [PMID: 30349056]
  60. J Med Chem. 2013 May 9;56(9):3546-56 [PMID: 23594231]

MeSH Term

Humans
Cathelicidins
Antimicrobial Cationic Peptides
Escherichia coli
Anti-Bacterial Agents
Structure-Activity Relationship
Disulfides
Microbial Sensitivity Tests

Chemicals

Cathelicidins
stable plasma protein solution
Antimicrobial Cationic Peptides
Anti-Bacterial Agents
Disulfides

Word Cloud

Created with Highcharts 10.0.0activitycathelicidin-PYdisulfideantimicrobialsyntheticAntimicrobialCathelicidin-PYlowsynthesislinearFmoc-SPPSbridgestrategyprepareSARsidechainanaloguessecondarystructureAMPpeptidesAMPsholdpromisenoveltherapeuticsfightmulti-drug-resistantpathogensNH-RKCNFLCKLKEKLRTVITSHIDKVLRPQG-COOH29-residuedisulfide-cyclisedpeptidesecretedinnatehostdefencemechanismfrogPYreportedpossessbroad-spectrumantibacterialantifungalpropertiesexhibitingcytotoxichemolyticHereindetailtotalusingentirelyon-resinincludingassemblysequencerapidflowiodine-mediatedformationoptimisingsubsequentlyadaptedbicyclichead-to-tailcyclisedderivativestructure-activityrelationshiprespect-terminallypositionedprobedpreparingalanine-substitutedanalogueserieslactam-bridgedpeptidomimeticsimplementingcyclisationinvestigatedcirculardichroismCDstabilityhumanserumSurprisinglyemergednon-essentialamenablemodificationFurthermoremultipledemonstratedselectivetowardsGram-negativepathogenphysiologicallyrelevantconcentrationsdivalentcationsFlow-BasedPreparationStudyRevealsSelectiveActivityEcolicathelicidinflow-basedSPPSlactammicrobiome

Similar Articles

Cited By