Surveillance of Daughter Micronodule Formation Is a Key Factor for Vaccine Evaluation Using Experimental Infection Models of Tuberculosis in Macaques.

Isabel Nogueira, Mart�� Catal��, Andrew D White, Sally A Sharpe, Jordi Bechini, Clara Prats, Cristina Vilaplana, Pere-Joan Cardona
Author Information
  1. Isabel Nogueira: Radiology Department, 'Germans Trias i Pujol' University Hospital, 08916 Badalona, Spain.
  2. Mart�� Catal��: Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain. ORCID
  3. Andrew D White: UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK. ORCID
  4. Sally A Sharpe: UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK.
  5. Jordi Bechini: Radiology Department, 'Germans Trias i Pujol' University Hospital, 08916 Badalona, Spain.
  6. Clara Prats: Escola d'Enginyeria Agroaliment��ria i de Biosistemes de Barcelona Departament de F��sica, Universitat Polit��cnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain. ORCID
  7. Cristina Vilaplana: Unitat de Tuberculosi Experimental, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain. ORCID
  8. Pere-Joan Cardona: Unitat de Tuberculosi Experimental, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain. ORCID

Abstract

Tuberculosis (TB) is still a major worldwide health problem and models using non-human primates (NHP) provide the most relevant approach for vaccine testing. In this study, we analysed CT images collected from cynomolgus and rhesus macaques following exposure to ultra-low dose (Mtb) aerosols, and monitored them for 16 weeks to evaluate the impact of prior intradermal or inhaled BCG vaccination on the progression of lung disease. All lesions found (2553) were classified according to their size and we subclassified small micronodules (<4.4 mm) as 'isolated', or as 'daughter', when they were in contact with consolidation (described as lesions ��� 4.5 mm). Our data link the higher capacity to contain Mtb infection in cynomolgus with the reduced incidence of daughter micronodules, thus avoiding the development of consolidated lesions and their consequent enlargement and evolution to cavitation. In the case of rhesus, intradermal vaccination has a higher capacity to reduce the formation of daughter micronodules. This study supports the 'Bubble Model' defined with the C3HBe/FeJ mice and proposes a new method to evaluate outcomes in experimental models of TB in NHP based on CT images, which would fit a future machine learning approach to evaluate new vaccines.

Keywords

References

  1. Lancet Respir Med. 2019 Sep;7(9):757-770 [PMID: 31416768]
  2. Am J Pathol. 2018 Jul;188(7):1666-1675 [PMID: 29753789]
  3. Radiology. 2008 Mar;246(3):697-722 [PMID: 18195376]
  4. Infect Immun. 2018 Jan 22;86(2): [PMID: 29203540]
  5. PLoS Med. 2011 Mar;8(3):e1001012 [PMID: 21445325]
  6. Int J Mycobacteriol. 2016 Dec;5(4):400-407 [PMID: 27931680]
  7. Int J Epidemiol. 1993 Dec;22(6):1154-8 [PMID: 8144299]
  8. JAMA. 1994 Mar 2;271(9):698-702 [PMID: 8309034]
  9. N Engl J Med. 2022 Apr 21;386(16):1490-1493 [PMID: 34986295]
  10. J Vis Exp. 2017 Sep 5;(127): [PMID: 28930979]
  11. Vaccines (Basel). 2021 Aug 25;9(9): [PMID: 34579182]
  12. Tuberculosis (Edinb). 2016 Mar;97:8-17 [PMID: 26980490]
  13. PLoS Pathog. 2016 Jul 05;12(7):e1005739 [PMID: 27379816]
  14. J Immunol. 2018 Nov 1;201(9):2541-2548 [PMID: 30348659]
  15. Clin Vaccine Immunol. 2015 Sep;22(9):992-1003 [PMID: 26108288]
  16. Antimicrob Agents Chemother. 2013 Sep;57(9):4237-4244 [PMID: 23796926]
  17. Front Microbiol. 2015 Jun 16;6:612 [PMID: 26136741]
  18. Sci Rep. 2021 Jun 10;11(1):12274 [PMID: 34112845]
  19. Vaccine. 2021 May 12;39(20):2736-2745 [PMID: 33810902]
  20. Tuberculosis (Edinb). 2017 May;104:46-57 [PMID: 28454649]
  21. Tuberculosis (Edinb). 2016 Jan;96:1-12 [PMID: 26786648]
  22. Lab Anim. 2018 Dec;52(6):599-610 [PMID: 29482429]
  23. Microbiol Spectr. 2016 Aug;4(4): [PMID: 27726820]
  24. Front Microbiol. 2016 Sep 28;7:1536 [PMID: 27733848]
  25. Radiographics. 2005 May-Jun;25(3):789-801 [PMID: 15888626]
  26. PLoS One. 2017 Mar 8;12(3):e0171906 [PMID: 28273087]
  27. PLoS One. 2010 Apr 06;5(4):e10030 [PMID: 20386605]
  28. Nat Med. 2018 Feb;24(2):130-143 [PMID: 29334373]
  29. J Comp Pathol. 2013 Nov;149(4):475-85 [PMID: 23880551]
  30. Infect Immun. 2004 Oct;72(10):5963-71 [PMID: 15385500]
  31. Tubercle. 1979 Dec;60(4):225-31 [PMID: 543008]
  32. Tuberculosis (Edinb). 2014 Jan;94(1):55-64 [PMID: 24291066]
  33. ILAR J. 2017 Dec 1;58(2):151-159 [PMID: 28575319]
  34. Nat Rev Immunol. 2012 Apr 20;12(5):352-66 [PMID: 22517424]
  35. Int J Infect Dis. 2017 Mar;56:263-267 [PMID: 27816661]
  36. Infect Immun. 2003 Oct;71(10):5831-44 [PMID: 14500505]
  37. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  38. Tuberculosis (Edinb). 2016 Jan;96:141-9 [PMID: 26723465]
  39. Tuberculosis (Edinb). 2016 Dec;101:174-190 [PMID: 27865390]
  40. Lancet Infect Dis. 2020 Jun;20(6):e117-e128 [PMID: 32482293]
  41. Nat Commun. 2017 Jul 14;8:16085 [PMID: 28706226]
  42. Lancet. 2006 Apr 8;367(9517):1173-80 [PMID: 16616560]
  43. Front Immunol. 2017 May 15;8:556 [PMID: 28555137]
  44. J Anat. 1984 Jan;138 ( Pt 1):95-112 [PMID: 6706842]
  45. Inhal Toxicol. 2012 Nov;24(13):869-99 [PMID: 23121298]
  46. Pharmaceutics. 2020 Apr 25;12(5): [PMID: 32344890]
  47. Cell Host Microbe. 2021 Jan 13;29(1):68-82.e5 [PMID: 33142108]
  48. Vaccines (Basel). 2020 Oct 05;8(4): [PMID: 33027958]
  49. Am J Anat. 1988 Jul;182(3):215-23 [PMID: 3213820]
  50. Infect Immun. 2009 Oct;77(10):4631-42 [PMID: 19620341]
  51. Int J Infect Dis. 2019 May;82:138-146 [PMID: 30872041]
  52. AJR Am J Roentgenol. 2015 May;204(5):974-8 [PMID: 25905930]
  53. Health Technol Assess. 2013 Sep;17(37):1-372, v-vi [PMID: 24021245]
  54. Eur J Radiol. 2004 Aug;51(2):139-49 [PMID: 15246519]
  55. Infect Immun. 2018 Jan 22;86(2): [PMID: 28947646]
  56. Front Immunol. 2017 Sep 13;8:1134 [PMID: 28955344]
  57. Lancet Infect Dis. 2016 Apr;16(4):e34-46 [PMID: 27036358]
  58. Infection. 2009 Apr;37(2):80-6 [PMID: 19308318]
  59. Lancet Respir Med. 2015 Dec;3(12):953-62 [PMID: 26598141]
  60. BMJ Glob Health. 2022 Jan;7(1): [PMID: 35039309]
  61. PLoS Comput Biol. 2020 May 20;16(5):e1007772 [PMID: 32433644]
  62. Cold Spring Harb Perspect Med. 2014 Sep 11;4(12):a018564 [PMID: 25213189]
  63. BMJ Open. 2019 Oct 15;9(10):e027033 [PMID: 31619416]
  64. Clin Vaccine Immunol. 2010 Aug;17(8):1170-82 [PMID: 20534795]
  65. Arch Immunol Ther Exp (Warsz). 2010 Feb;58(1):7-14 [PMID: 20049645]
  66. J Infect Dis. 2013 Jul 15;208(2):199-202 [PMID: 23564636]
  67. Front Immunol. 2019 Nov 01;10:2479 [PMID: 31736945]
  68. Infect Immun. 2006 Jul;74(7):3790-803 [PMID: 16790751]
  69. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11497-502 [PMID: 11562492]
  70. Radiographics. 2017 Jan-Feb;37(1):52-72 [PMID: 28076011]
  71. Infect Immun. 2018 Aug 22;86(9): [PMID: 29891540]
  72. Front Microbiol. 2016 Feb 02;7:33 [PMID: 26870005]
  73. Tuberculosis (Edinb). 2009 Nov;89(6):405-16 [PMID: 19879805]

Grants

  1. LCF/PR/GN16/10290002/La Caixa Foundation

Word Cloud

Created with Highcharts 10.0.0evaluatevaccinationlesionsmicronodulesTuberculosisTBmodelsnon-humanNHPapproachvaccinestudyCTimagescynomolgusrhesusMtbintradermalBCG4mmhighercapacitydaughternewstillmajorworldwidehealthproblemusingprimatesproviderelevanttestinganalysedcollectedmacaquesfollowingexposureultra-lowdoseaerosolsmonitored16weeksimpactpriorinhaledprogressionlungdiseasefound2553classifiedaccordingsizesubclassifiedsmall<4'isolated''daughter'contactconsolidationdescribed���5datalinkcontaininfectionreducedincidencethusavoidingdevelopmentconsolidatedconsequentenlargementevolutioncavitationcasereduceformationsupports'BubbleModel'definedC3HBe/FeJmiceproposesmethodoutcomesexperimentalbasedfitfuturemachinelearningvaccinesSurveillanceDaughterMicronoduleFormationKeyFactorVaccineEvaluationUsingExperimentalInfectionModelsMacaquesaerosolbubblemodelcomputedtomographyscannermacaqueprimatetuberculosis

Similar Articles

Cited By