Hierarchical graph learning for protein-protein interaction.

Ziqi Gao, Chenran Jiang, Jiawen Zhang, Xiaosen Jiang, Lanqing Li, Peilin Zhao, Huanming Yang, Yong Huang, Jia Li
Author Information
  1. Ziqi Gao: Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China. ORCID
  2. Chenran Jiang: Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
  3. Jiawen Zhang: Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China.
  4. Xiaosen Jiang: The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, 310022, China.
  5. Lanqing Li: AI Lab, Tencent, Shenzhen, 518000, China. ORCID
  6. Peilin Zhao: AI Lab, Tencent, Shenzhen, 518000, China.
  7. Huanming Yang: The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, 310022, China. ORCID
  8. Yong Huang: Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China. yonghuang@ust.hk. ORCID
  9. Jia Li: Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China. jialee@ust.hk. ORCID

Abstract

Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, "HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]" is a domain-knowledge-driven and interpretable framework for PPI prediction studies.

References

  1. Cell. 2015 Oct 22;163(3):712-23 [PMID: 26496610]
  2. Cell. 2014 Nov 20;159(5):1212-1226 [PMID: 25416956]
  3. Proteins. 2000 Jun 1;39(4):331-42 [PMID: 10813815]
  4. Nat Med. 2022 Jun;28(6):1212-1223 [PMID: 35618837]
  5. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D129-33 [PMID: 14681376]
  6. J Med Chem. 2009 Feb 26;52(4):1214-8 [PMID: 19193010]
  7. Proteins. 1991;9(1):37-55 [PMID: 2017435]
  8. Mol Cell Biol. 1997 Jun;17(6):3094-102 [PMID: 9154808]
  9. Bioinformatics. 2019 Jul 15;35(14):i305-i314 [PMID: 31510705]
  10. Methods Mol Biol. 2007;406:89-112 [PMID: 18287689]
  11. Nature. 2017 May 25;545(7655):505-509 [PMID: 28514442]
  12. AMIA Annu Symp Proc. 2018 Dec 05;2018:1571-1580 [PMID: 30815203]
  13. Nat Methods. 2012 Dec;9(12):1134-6 [PMID: 23223166]
  14. Nat Commun. 2020 Jul 8;11(1):3406 [PMID: 32641768]
  15. Methods Mol Biol. 2008;424:349-64 [PMID: 18369874]
  16. Proteins. 2006 Oct 1;65(1):40-8 [PMID: 16894596]
  17. Nat Methods. 2022 Jun;19(6):730-739 [PMID: 35637310]
  18. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4372-6 [PMID: 12676999]
  19. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  20. Nat Commun. 2022 Jul 8;13(1):3952 [PMID: 35804026]
  21. Nat Neurosci. 2014 Dec;17(12):1664-72 [PMID: 25362473]
  22. Nature. 2020 Oct;586(7829):378-384 [PMID: 33057220]
  23. Nat Commun. 2021 May 26;12(1):3168 [PMID: 34039967]
  24. Nat Immunol. 2004 Jul;5(7):738-43 [PMID: 15170211]
  25. PeerJ. 2018 May 4;6:e4750 [PMID: 29740518]
  26. Sci Rep. 2016 Oct 27;6:35939 [PMID: 27786280]
  27. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  28. Bioinformatics. 2018 Feb 15;34(4):660-668 [PMID: 29028931]
  29. Adv Neural Inf Process Syst. 2019 Dec;32:9240-9251 [PMID: 32265580]
  30. J Mol Biol. 2007 Sep 21;372(3):774-97 [PMID: 17681537]
  31. Mol Ther. 2016 Apr;24(4):707-18 [PMID: 26675501]
  32. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  33. Commun Biol. 2022 May 11;5(1):445 [PMID: 35545699]
  34. Comput Biol Med. 2021 Oct;137:104772 [PMID: 34450380]
  35. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  36. Mol Biotechnol. 2008 Jan;38(1):1-17 [PMID: 18095187]
  37. Mol Ther Nucleic Acids. 2020 Aug 25;22:198-208 [PMID: 33230427]
  38. Nat Commun. 2022 Aug 8;13(1):4644 [PMID: 35941170]
  39. Nat Commun. 2021 Dec 3;12(1):7068 [PMID: 34862392]
  40. Nat Commun. 2019 Mar 18;10(1):1240 [PMID: 30886144]
  41. Protein Sci. 1994 May;3(5):717-29 [PMID: 8061602]
  42. Nature. 2021 Apr;592(7852):86-92 [PMID: 33473216]
  43. Bioinformatics. 2017 Oct 01;33(19):3036-3042 [PMID: 28575181]

MeSH Term

Humans
Protein Interaction Mapping
Deep Learning
Proteins
Amino Acid Sequence
Protein Interaction Maps

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0PPIsPPIgraphmodelHIGH-PPIviewproteinstudiespredictionunderstandinghierarchicallearningoutside-of-proteinbottominside-of-proteinProtein-ProteinInteractionsfundamentalmeansfunctionssignalingsbiologicalsystemsmassivegrowthdemandcostassociatedexperimentalcallscomputationaltoolsautomatedDespiterecentprogresssilicomethodsremaininadequatemodelingnaturalhierarchypresentdouble-viewedpredictextrapolatemoleculardetailsinvolvedcreatenodenetworktopgroupchemicallyrelevantdescriptorsinsteadsequencesusedbettercapturestructure-functionrelationshipexamineshumaninteractomeestablishrobustmachinedemonstrateshighaccuracyrobustnesspredictingMoreovercaninterpretmodesactionidentifyingimportantbindingcatalyticsitespreciselyOverall"HIGH-PPI[https://githubcom/zqgao22/HIGH-PPI]"domain-knowledge-driveninterpretableframeworkHierarchicalprotein-proteininteraction

Similar Articles

Cited By