Adaptations of Pseudoxylaria towards a comb-associated lifestyle in fungus-farming termite colonies.

Janis Fricke, Felix Schalk, Nina B Kreuzenbeck, Elena Seibel, Judith Hoffmann, Georg Dittmann, Benjamin H Conlon, Huijuan Guo, Z Wilhelm de Beer, Daniel Giddings Vassão, Gerd Gleixner, Michael Poulsen, Christine Beemelmanns
Author Information
  1. Janis Fricke: Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
  2. Felix Schalk: Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
  3. Nina B Kreuzenbeck: Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
  4. Elena Seibel: Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
  5. Judith Hoffmann: Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
  6. Georg Dittmann: Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745, Jena, Germany.
  7. Benjamin H Conlon: Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark. ORCID
  8. Huijuan Guo: Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
  9. Z Wilhelm de Beer: Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, 0028, Pretoria, South Africa.
  10. Daniel Giddings Vassão: Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany. ORCID
  11. Gerd Gleixner: Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745, Jena, Germany. ORCID
  12. Michael Poulsen: Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark. ORCID
  13. Christine Beemelmanns: Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany. Christine.Beemelmanns@helmholtz-hips.de. ORCID

Abstract

Characterizing ancient clades of fungal symbionts is necessary for understanding the evolutionary process underlying symbiosis development. In this study, we investigated a distinct subgeneric taxon of Xylaria (Xylariaceae), named Pseudoxylaria, whose members have solely been isolated from the fungus garden of farming termites. Pseudoxylaria are inconspicuously present in active fungus gardens of termite colonies and only emerge in the form of vegetative stromata, when the fungus comb is no longer attended ("sit and wait" strategy). Insights into the genomic and metabolic consequences of their association, however, have remained sparse. Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth. We also uncovered that Pseudoxylaria is still capable of producing structurally unique metabolites, which was exemplified by the isolation of two novel metabolites, and that the natural product repertoire correlated with antimicrobial and insect antifeedant activity.

References

  1. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  2. Nat Prod Rep. 2017 Nov 15;34(11):1252-1263 [PMID: 28849835]
  3. Chembiochem. 2018 Nov 2;19(21):2307-2311 [PMID: 30160345]
  4. Analyst. 2009 Feb;134(2):213-22 [PMID: 19173039]
  5. Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360 [PMID: 30398656]
  6. Nucleic Acids Res. 2017 Feb 28;45(4):e18 [PMID: 28204566]
  7. Plant Physiol. 1993 Aug;102(4):1287-1290 [PMID: 12231905]
  8. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  9. Nucleic Acids Res. 2013 Jan;41(Database issue):D536-44 [PMID: 23161684]
  10. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  11. Mycologia. 2005 Jul-Aug;97(4):914-23 [PMID: 16457361]
  12. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  13. Bioinformatics. 2013 Nov 1;29(21):2669-77 [PMID: 23990416]
  14. J Chem Ecol. 2017 Oct;43(10):986-995 [PMID: 29124530]
  15. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6428-6433 [PMID: 29866821]
  16. Mol Ecol. 2009 Feb;18(3):553-67 [PMID: 19161474]
  17. Insects. 2020 Aug 13;11(8): [PMID: 32823564]
  18. Mol Phylogenet Evol. 2013 Nov;69(2):313-9 [PMID: 22982435]
  19. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  20. Annu Rev Entomol. 2018 Jan 7;63:105-123 [PMID: 28945976]
  21. Appl Environ Microbiol. 2013 Jun;79(11):3380-91 [PMID: 23524681]
  22. Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10 [PMID: 27137889]
  23. Nat Chem Biol. 2020 Jan;16(1):60-68 [PMID: 31768033]
  24. mSystems. 2022 Feb 22;7(1):e0121421 [PMID: 35014870]
  25. Chem Soc Rev. 2018 Mar 5;47(5):1638-1651 [PMID: 28745342]
  26. Annu Rev Genet. 2020 Nov 23;54:539-561 [PMID: 32955944]
  27. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  28. Insect Biochem Mol Biol. 2016 Apr;71:37-48 [PMID: 26855197]
  29. Nat Commun. 2016 Jul 20;7:12233 [PMID: 27436133]
  30. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  31. RSC Adv. 2021 May 24;11(31):18748-18756 [PMID: 34046176]
  32. Mol Phylogenet Evol. 2010 Mar;54(3):957-69 [PMID: 20035889]
  33. Annu Rev Microbiol. 2020 Sep 8;74:267-290 [PMID: 32660387]
  34. Chembiochem. 2021 Nov 3;22(21):3027-3036 [PMID: 34190382]
  35. Stud Mycol. 2021 Aug 26;99:100118 [PMID: 34527085]
  36. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  37. iScience. 2021 Jun 01;24(6):102680 [PMID: 34189441]
  38. Annu Rev Entomol. 2021 Jan 7;66:297-316 [PMID: 32926791]
  39. Mar Drugs. 2020 Feb 23;18(2): [PMID: 32102178]
  40. NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108 [PMID: 33575650]
  41. mSphere. 2021 Mar 3;6(2): [PMID: 33658277]
  42. Mol Ecol. 2018 Apr;27(8):2077-2094 [PMID: 29087025]
  43. Bioinformatics. 2018 Aug 1;34(15):2666-2669 [PMID: 29547981]
  44. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  45. Nat Biotechnol. 2016 Aug 9;34(8):828-837 [PMID: 27504778]
  46. Mycologia. 2007 Nov-Dec;99(6):936-57 [PMID: 18333517]
  47. Bioinformatics. 2015 Nov 15;31(22):3718-20 [PMID: 26209431]
  48. Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2213096119 [PMID: 36508678]
  49. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  50. Nat Rev Microbiol. 2019 Mar;17(3):167-180 [PMID: 30531948]
  51. mBio. 2021 Jun 29;12(3):e0355120 [PMID: 34126770]
  52. Bioinform Adv. 2021 Aug 05;1(1):vbab016 [PMID: 36700093]
  53. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  54. Mycologia. 2009 Sep-Oct;101(5):686-91 [PMID: 19750948]
  55. Nat Prod Rep. 2022 Feb 23;39(2):231-248 [PMID: 34879123]
  56. Chembiochem. 2020 Oct 15;21(20):2991-2996 [PMID: 32470183]
  57. Genome Res. 2004 Jul;14(7):1394-403 [PMID: 15231754]
  58. F1000Res. 2018 Aug 24;7:1338 [PMID: 30254741]
  59. Genome Biol. 2019 Dec 16;20(1):275 [PMID: 31843001]
  60. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  61. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  62. Sci Rep. 2019 Jun 19;9(1):8819 [PMID: 31217550]
  63. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603 [PMID: 22661580]
  64. Nat Prod Rep. 2017 Jul 6;34(7):784-814 [PMID: 28561849]
  65. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  66. BMC Bioinformatics. 2017 Nov 21;18(1):510 [PMID: 29162031]
  67. PLoS Comput Biol. 2020 Jun 26;16(6):e1007981 [PMID: 32589667]
  68. Toxins (Basel). 2019 Apr 29;11(5): [PMID: 31035652]
  69. Insects. 2012 Mar 16;3(1):307-23 [PMID: 26467962]
  70. Biology (Basel). 2021 Jun 23;10(7): [PMID: 34201676]
  71. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  72. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  73. Curr Opin Chem Biol. 2016 Apr;31:40-9 [PMID: 26812494]
  74. Org Lett. 2016 Jul 15;18(14):3338-41 [PMID: 27341414]
  75. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12 [PMID: 15215400]
  76. G3 (Bethesda). 2017 Oct 5;7(10):3349-3357 [PMID: 28866640]
  77. Mol Biol Evol. 2017 Dec 1;34(12):3267-3278 [PMID: 29029342]
  78. Ecol Evol. 2020 Jun 30;10(14):7768-7782 [PMID: 32760563]
  79. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  80. Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35 [PMID: 33978755]
  81. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 [PMID: 24270786]
  82. Mol Biol Evol. 2013 May;30(5):1188-95 [PMID: 23418397]
  83. Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101 [PMID: 29771380]

MeSH Term

Animals
Isoptera
Biological Evolution
Acclimatization
Symbiosis
Fungi
Agriculture

Word Cloud

Created with Highcharts 10.0.0PseudoxylariafungustermitecoloniesgrowthXylariamembersassociationtwooxidativefoodmetabolitesCharacterizingancientcladesfungalsymbiontsnecessaryunderstandingevolutionaryprocessunderlyingsymbiosisdevelopmentstudyinvestigateddistinctsubgenerictaxonXylariaceaenamedwhosesolelyisolatedgardenfarmingtermitesinconspicuouslypresentactivegardensemergeformvegetativestromatacomblongerattended"sitwait"strategyInsightsgenomicmetabolicconsequenceshoweverremainedsparseCapitalizingviableculturesdifferentobtainedgenomesseventranscriptomesisolatesUsingwhole-genome-basedcomparisonfree-livinggenusdocumentaccompaniedsignificantreductionsgenomesizeprotein-codinggenecontentreducedfunctionalcapacitiesrelatedlignindegradationstressresponsessecondarymetaboliteproductionFunctionalstudiesbasedassays andfungus-fungusco-cultivationscoupledisotopefractionationanalysisshowedmoderatelyantagonizesTermitomycesinsteadextractsnutrientsbiomassalsouncoveredstillcapableproducingstructurallyuniqueexemplifiedisolationnovelnaturalproductrepertoirecorrelatedantimicrobialinsectantifeedantactivityAdaptationstowardscomb-associatedlifestylefungus-farming

Similar Articles

Cited By