Duox is the primary NADPH oxidase responsible for ROS production during adult caudal fin regeneration in zebrafish.

Kunal Chopra, Milda Folkmanaitė, Liam Stockdale, Vishali Shathish, Shoko Ishibashi, Rachel Bergin, Jorge Amich, Enrique Amaya
Author Information
  1. Kunal Chopra: Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  2. Milda Folkmanaitė: Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  3. Liam Stockdale: Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  4. Vishali Shathish: Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  5. Shoko Ishibashi: Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  6. Rachel Bergin: Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  7. Jorge Amich: Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
  8. Enrique Amaya: Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.

Abstract

Sustained elevated levels of reactive oxygen species (ROS) have been shown to be essential for regeneration in many organisms. This has been shown primarily via the use of pharmacological inhibitors targeting the family of NADPH oxidases (NOXes). To identify the specific NOXes involved in ROS production during adult caudal fin regeneration in zebrafish, we generated mutants for , and (a key subunit of NOXes 1-4) and crossed these lines with a transgenic line ubiquitously expressing , which permits the measurement of ROS levels. Homozygous mutants had the greatest effect on ROS levels and rate of fin regeneration among the single mutants. However, : double mutants showed a greater effect on fin regeneration than the single mutants, suggesting that Nox1-4 also play a role during regeneration. This work also serendipitously found that ROS levels in amputated adult zebrafish fins oscillate with a circadian rhythm.

Keywords

References

  1. Nat Cell Biol. 2013 Feb;15(2):222-8 [PMID: 23314862]
  2. Antimicrob Agents Chemother. 2018 Dec 21;63(1): [PMID: 30397071]
  3. PLoS Genet. 2017 Jul 28;13(7):e1006937 [PMID: 28753614]
  4. Antioxid Redox Signal. 2015 Apr 10;22(11):921-37 [PMID: 25621814]
  5. Dev Dyn. 2009 Dec;238(12):2975-3015 [PMID: 19891001]
  6. Biol Open. 2019 Feb 22;8(2): [PMID: 30700401]
  7. Mol Cell Endocrinol. 2010 Jun 30;322(1-2):99-106 [PMID: 20122987]
  8. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11029-34 [PMID: 23776233]
  9. Sci Transl Med. 2017 Nov 8;9(415): [PMID: 29118260]
  10. Cell Mol Immunol. 2015 Jan;12(1):5-23 [PMID: 25263488]
  11. Development. 2014 Aug;141(16):3105-11 [PMID: 25100653]
  12. J Clin Invest. 2008 Mar;118(3):1176-85 [PMID: 18292807]
  13. Invest Ophthalmol Vis Sci. 2017 Mar 1;58(3):1865-1874 [PMID: 28358954]
  14. Sci Rep. 2013;3:2084 [PMID: 23803955]
  15. Eukaryot Cell. 2011 Jul;10(7):932-44 [PMID: 21551247]
  16. Clin Infect Dis. 2015 Apr 15;60(8):1176-83 [PMID: 25537876]
  17. Curr Biol. 2011 Nov 22;21(22):1912-7 [PMID: 22079110]
  18. Nature. 2009 Jun 18;459(7249):996-9 [PMID: 19494811]
  19. Chronobiol Int. 1994 Jun;11(3):173-9 [PMID: 8082226]
  20. Nature. 2013 Apr 25;496(7446):494-7 [PMID: 23594742]
  21. Clin Immunol. 2008 Feb;126(2):155-64 [PMID: 18037347]
  22. Medicine (Baltimore). 2000 May;79(3):155-69 [PMID: 10844935]
  23. NPJ Regen Med. 2021 Sep 13;6(1):55 [PMID: 34518542]
  24. Genome Res. 2003 Mar;13(3):382-90 [PMID: 12618368]
  25. Development. 1995 Feb;121(2):347-57 [PMID: 7768177]
  26. PLoS Genet. 2015 Oct 23;11(10):e1005595 [PMID: 26496642]
  27. Eukaryot Cell. 2014 Oct;13(10):1266-77 [PMID: 24879123]
  28. Clin Infect Dis. 2011 Dec;53(12):e159-69 [PMID: 22080130]
  29. Bioessays. 2014 Jan;36(1):27-33 [PMID: 24264888]
  30. Clin Sci (Lond). 2017 May 1;131(10):981-990 [PMID: 28473473]
  31. Development. 2005 Dec;132(23):5173-83 [PMID: 16251209]
  32. Gene. 2016 Jul 15;586(1):27-35 [PMID: 27048830]
  33. Clin Exp Immunol. 2008 May;152(2):211-8 [PMID: 18410635]
  34. Redox Biol. 2020 May;32:101466 [PMID: 32105983]
  35. Physiol Rev. 2007 Jan;87(1):245-313 [PMID: 17237347]
  36. Curr Biol. 2013 Mar 4;23(5):424-9 [PMID: 23394834]
  37. Pediatr Infect Dis J. 2011 Jan;30(1):57-62 [PMID: 20700078]
  38. Biol Open. 2012 Aug 15;1(8):739-46 [PMID: 23213467]
  39. Cardiovasc Res. 2006 Jul 15;71(2):331-41 [PMID: 16545786]
  40. Sci Rep. 2020 Jan 20;10(1):649 [PMID: 31959817]
  41. J Cell Sci. 2019 Dec 20;133(5): [PMID: 31722976]
  42. Elife. 2019 Dec 23;8: [PMID: 31868166]
  43. Nature. 2019 Apr;568(7751):193-197 [PMID: 30944477]
  44. Oxid Med Cell Longev. 2015;2015:392476 [PMID: 26180588]
  45. BMC Evol Biol. 2007 Jul 06;7:109 [PMID: 17612411]
  46. Wound Repair Regen. 2019 Jul;27(4):375-385 [PMID: 31017740]
  47. Biol Open. 2016 Jun 15;5(6):819-28 [PMID: 27215324]
  48. Science. 2014 Sep 12;345(6202):1358-61 [PMID: 25170046]
  49. Aging Cell. 2015 Oct;14(5):857-66 [PMID: 26121607]
  50. PLoS Pathog. 2018 Aug 2;14(8):e1007229 [PMID: 30071103]
  51. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1592-9 [PMID: 23267082]
  52. J Am Assoc Lab Anim Sci. 2014 Mar;53(2):198-203 [PMID: 24602548]
  53. Elife. 2022 Aug 22;11: [PMID: 35993337]
  54. Front Immunol. 2021 Mar 26;12:636585 [PMID: 33841419]
  55. Nat Commun. 2018 Oct 1;9(1):4010 [PMID: 30275454]
  56. Semin Immunol. 2014 Aug;26(4):277-94 [PMID: 25086685]
  57. Nat Cell Biol. 2018 Mar;20(3):307-319 [PMID: 29434374]
  58. Sci Rep. 2018 Apr 4;8(1):5647 [PMID: 29618800]
  59. Dev Dyn. 2019 Feb;248(2):189-196 [PMID: 30569660]
  60. Science. 2016 Nov 25;354(6315):1008-1015 [PMID: 27885007]
  61. Sci Rep. 2016 Feb 08;6:20752 [PMID: 26853930]
  62. Development. 2011 Dec;138(24):5451-8 [PMID: 22110059]
  63. Curr Opin Infect Dis. 2012 Dec;25(6):658-69 [PMID: 22964947]
  64. J Biol Chem. 2011 Apr 1;286(13):11672-84 [PMID: 21224385]
  65. PLoS One. 2011;6(7):e22820 [PMID: 21829525]
  66. Wound Repair Regen. 2022 Nov;30(6):665-680 [PMID: 36148505]
  67. Dev Biol. 2016 Jun 15;414(2):133-41 [PMID: 27158028]
  68. Nat Methods. 2006 Apr;3(4):281-6 [PMID: 16554833]

Grants

  1. MR/L007525/1/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0ROSregenerationmutantslevelsfinNOXesadultzebrafishshownNADPHproductioncaudalsinglealsoSustainedelevatedreactiveoxygenspeciesessentialmanyorganismsprimarilyviausepharmacologicalinhibitorstargetingfamilyoxidasesidentifyspecificinvolvedgeneratedkeysubunit1-4crossedlinestransgeniclineubiquitouslyexpressingpermitsmeasurementHomozygousgreatesteffectrateamongHowever:doubleshowedgreatereffect onsuggestingNox1-4playroleworkserendipitouslyfoundamputatedfinsoscillatecircadianrhythmDuoxprimaryoxidaseresponsibleCellbiologyIchthyologyMoleculargenetics

Similar Articles

Cited By