Deep learning for studying drawing behavior: A review.

Benjamin Beltzung, Marie Pelé, Julien P Renoult, Cédric Sueur
Author Information
  1. Benjamin Beltzung: CNRS, IPHC UMR, Université de Strasbourg, Strasbourg, France.
  2. Marie Pelé: ANTHROPO LAB - ETHICS EA 7446, Université Catholique de Lille, Lille, France.
  3. Julien P Renoult: CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
  4. Cédric Sueur: CNRS, IPHC UMR, Université de Strasbourg, Strasbourg, France.

Abstract

In recent years, computer science has made major advances in understanding drawing behavior. Artificial intelligence, and more precisely deep learning, has displayed unprecedented performance in the automatic recognition and classification of large databases of sketches and drawings collected through touchpad devices. Although deep learning can perform these tasks with high accuracy, the way they are performed by the algorithms remains largely unexplored. Improving the interpretability of deep neural networks is a very active research area, with promising recent advances in understanding human cognition. Deep learning thus offers a powerful framework to study drawing behavior and the underlying cognitive processes, particularly in children and non-human animals, on whom knowledge is incomplete. In this literature review, we first explore the history of deep learning as applied to the study of drawing along with the main discoveries in this area, while proposing open challenges. Second, multiple ideas are discussed to understand the inherent structure of deep learning models. A non-exhaustive list of drawing datasets relevant to deep learning approaches is further provided. Finally, the potential benefits of coupling deep learning with comparative cultural analyses are discussed.

Keywords

References

  1. Sci Rep. 2020 Nov 30;10(1):20854 [PMID: 33257744]
  2. Biochem J. 2020 Dec 11;477(23):4559-4580 [PMID: 33290527]
  3. Alzheimers Res Ther. 2022 Aug 9;14(1):111 [PMID: 35945568]
  4. J Comp Psychol. 2021 May;135(2):176-184 [PMID: 33252920]
  5. J Int Neuropsychol Soc. 2014 Oct;20(9):920-8 [PMID: 25222513]
  6. IEEE Trans Vis Comput Graph. 2020 Nov;26(11):3365-3385 [PMID: 31180860]
  7. Lancet Digit Health. 2021 Nov;3(11):e745-e750 [PMID: 34711379]
  8. Neuron. 2020 Feb 5;105(3):416-434 [PMID: 32027833]
  9. Hum Nat. 2022 Dec;33(4):400-424 [PMID: 36515859]
  10. J Mol Model. 2021 Feb 4;27(3):71 [PMID: 33543405]
  11. Sci Rep. 2021 Feb 16;11(1):3860 [PMID: 33594111]
  12. J Cogn Neurosci. 2021 Sep 1;33(10):2017-2031 [PMID: 32027584]
  13. Med Image Anal. 2020 Jul;63:101694 [PMID: 32417716]
  14. Dev Psychol. 2001 Jan;37(1):101-14 [PMID: 11206425]
  15. J Neurosci Methods. 2021 Aug 1;360:109231 [PMID: 34081997]
  16. Nat Mach Intell. 2019 May;1(5):206-215 [PMID: 35603010]
  17. J Vis. 2022 Feb 1;22(2):4 [PMID: 35129578]
  18. Anim Cogn. 2003 Dec;6(4):245-51 [PMID: 14605946]
  19. Front Psychol. 2021 Jun 03;12:659569 [PMID: 34149550]
  20. IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228 [PMID: 32012000]
  21. Nature. 2022 Sep;609(7928):864-866 [PMID: 36127440]
  22. Nat Neurosci. 2019 Nov;22(11):1761-1770 [PMID: 31659335]
  23. IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5150-5161 [PMID: 33826519]
  24. Data Min Knowl Discov. 2019;33(1):96-130 [PMID: 30828258]
  25. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  26. IEEE Comput Graph Appl. 2019 Mar-Apr;39(2):38-51 [PMID: 30530356]
  27. J Comp Psychol. 1987 Mar;101(1):82-9 [PMID: 3568612]
  28. Nat Neurosci. 1999 Jan;2(1):79-87 [PMID: 10195184]
  29. Nat Commun. 2021 Mar 25;12(1):1872 [PMID: 33767141]
  30. IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):4793-4813 [PMID: 33079674]
  31. PLoS Comput Biol. 2018 Dec 7;14(12):e1006613 [PMID: 30532273]
  32. Animals (Basel). 2021 Nov 09;11(11): [PMID: 34827934]
  33. Front Psychol. 2015 Aug 21;6:1227 [PMID: 26347690]

Word Cloud

Created with Highcharts 10.0.0learningdeepdrawingbehaviorrecentadvancesunderstandingintelligenceneuralareacognitionDeepstudyreviewdiscussedartificialyearscomputersciencemademajorArtificialpreciselydisplayedunprecedentedperformanceautomaticrecognitionclassificationlargedatabasessketchesdrawingscollectedtouchpaddevicesAlthoughcanperformtaskshighaccuracywayperformedalgorithmsremainslargelyunexploredImprovinginterpretabilitynetworksactiveresearchpromisinghumanthusofferspowerfulframeworkunderlyingcognitiveprocessesparticularlychildrennon-humananimalsknowledgeincompleteliteraturefirstexplorehistoryappliedalongmaindiscoveriesproposingopenchallengesSecondmultipleideasunderstandinherentstructuremodelsnon-exhaustivelistdatasetsrelevantapproachesprovidedFinallypotentialbenefitscouplingcomparativeculturalanalysesstudyingbehavior:artAInetworkprimatessketch

Similar Articles

Cited By (4)