Equine osteoarthritis: Strategies to enhance mesenchymal stromal cell-based acellular therapies.

Manon Jammes, Romain Contentin, Frédéric Cassé, Philippe Galéra
Author Information
  1. Manon Jammes: BIOTARGEN, UNICAEN, Normandie University, Caen, France.
  2. Romain Contentin: BIOTARGEN, UNICAEN, Normandie University, Caen, France.
  3. Frédéric Cassé: BIOTARGEN, UNICAEN, Normandie University, Caen, France.
  4. Philippe Galéra: BIOTARGEN, UNICAEN, Normandie University, Caen, France.

Abstract

Osteoarthritis (OA) is a degenerative disease that eventually leads to the complete degradation of articular cartilage. Articular cartilage has limited intrinsic capacity for self-repair and, to date, there is no curative treatment for OA. Humans and horses have a similar articular cartilage and OA etiology. Thus, in the context of a One Health approach, progress in the treatment of equine OA can help improve horse health and can also constitute preclinical studies for human medicine. Furthermore, equine OA affects horse welfare and leads to significant financial losses in the equine industry. In the last few years, the immunomodulatory and cartilage regenerative potentials of mesenchymal stromal cells (MSCs) have been demonstrated, but have also raised several concerns. However, most of MSC therapeutic properties are contained in their secretome, particularly in their extracellular vesicles (EVs), a promising avenue for acellular therapy. From tissue origin to culture methods, various aspects must be taken into consideration to optimize MSC secretome potential for OA treatment. Immunomodulatory and regenerative properties of MSCs can also be enhanced by recreating a pro-inflammatory environment to mimic an pathological setting, but more unusual methods also deserve to be investigated. Altogether, these strategies hold substantial potential for the development of MSC secretome-based therapies suitable for OA management. The aim of this mini review is to survey the most recent advances on MSC secretome research with regard to equine OA.

Keywords

References

  1. Int J Mol Sci. 2018 Feb 01;19(2): [PMID: 29389887]
  2. Stem Cell Rev Rep. 2017 Oct;13(5):611-630 [PMID: 28597211]
  3. Front Vet Sci. 2020 Jun 11;7:318 [PMID: 32656251]
  4. Exp Biol Med (Maywood). 2014 Jan;239(1):105-15 [PMID: 24227633]
  5. Tissue Eng Part C Methods. 2010 Aug;16(4):735-49 [PMID: 19811095]
  6. Stem Cell Res Ther. 2018 Apr 3;9(1):82 [PMID: 29615127]
  7. Stem Cells Int. 2021 May 14;2021:6665358 [PMID: 34093710]
  8. Cytotherapy. 2005;7(6):509-19 [PMID: 16306013]
  9. Vet Immunol Immunopathol. 2018 Aug;202:25-30 [PMID: 30078595]
  10. Stem Cells. 2007 Apr;25(4):903-10 [PMID: 17218399]
  11. Int J Mol Sci. 2022 May 21;23(10): [PMID: 35628604]
  12. Front Immunol. 2022 Apr 04;13:824188 [PMID: 35444652]
  13. Vet Immunol Immunopathol. 2019 Nov;217:109944 [PMID: 31563725]
  14. Cells. 2019 Dec 11;8(12): [PMID: 31835680]
  15. Stem Cell Res Ther. 2020 May 20;11(1):187 [PMID: 32434555]
  16. Front Vet Sci. 2021 Apr 30;8:634064 [PMID: 33996964]
  17. Curr Pharmacol Rep. 2016 Apr;2(2):64-72 [PMID: 27034917]
  18. Stem Cell Res Ther. 2018 Mar 22;9(1):75 [PMID: 29566772]
  19. J Vet Sci. 2017 Mar 30;18(1):39-49 [PMID: 27297420]
  20. Front Vet Sci. 2020 Dec 04;7:554306 [PMID: 33344521]
  21. Stem Cells Dev. 2018 Nov 1;27(21):1518-1525 [PMID: 30044182]
  22. PLoS One. 2018 Mar 22;13(3):e0194567 [PMID: 29566102]
  23. Acta Biomater. 2015 Jul;20:1-9 [PMID: 25871537]
  24. Arthroscopy. 2011 Nov;27(11):1552-61 [PMID: 21862278]
  25. Stem Cell Rev Rep. 2020 Feb;16(1):126-143 [PMID: 31745710]
  26. Vet Immunol Immunopathol. 2013 Nov 15;156(1-2):99-106 [PMID: 24094688]
  27. Stem Cells Transl Med. 2019 Aug;8(8):746-757 [PMID: 30964245]
  28. Front Vet Sci. 2021 Sep 14;8:724041 [PMID: 34595230]
  29. Stem Cell Reports. 2021 Apr 13;16(4):694-707 [PMID: 33636113]
  30. J Cell Mol Med. 2018 Mar;22(3):1428-1442 [PMID: 29392844]
  31. Stem Cells Dev. 2014 Jun 1;23(11):1258-65 [PMID: 24438346]
  32. Vet Surg. 2014 Mar;43(3):255-65 [PMID: 24433318]
  33. Vet Rec Open. 2021 Nov 10;8(1):e22 [PMID: 34795904]
  34. PLoS One. 2014 Dec 01;9(12):e113615 [PMID: 25438145]
  35. Cell Mol Life Sci. 2021 Jan;78(2):447-467 [PMID: 32699947]
  36. Theranostics. 2021 Jan 1;11(7):3183-3195 [PMID: 33537081]
  37. Stem Cell Rev Rep. 2020 Oct;16(5):853-875 [PMID: 32681232]
  38. Front Bioeng Biotechnol. 2020 Jun 30;8:658 [PMID: 32714905]
  39. Front Bioeng Biotechnol. 2021 Apr 23;9:645039 [PMID: 33968913]
  40. J Vis Exp. 2017 Mar 18;(121): [PMID: 28362380]
  41. Membranes (Basel). 2022 Feb 16;12(2): [PMID: 35207146]
  42. Stem Cells Int. 2019 May 2;2019:9431894 [PMID: 31191689]
  43. Theranostics. 2018 Feb 3;8(5):1399-1410 [PMID: 29507629]
  44. Stem Cell Res Ther. 2020 Feb 3;11(1):46 [PMID: 32014064]
  45. Stem Cell Res Ther. 2019 May 2;10(1):131 [PMID: 31046833]
  46. Tissue Eng Part C Methods. 2010 Aug;16(4):771-81 [PMID: 19839741]
  47. Stem Cell Res Ther. 2014 Jul 30;5(4):90 [PMID: 25080326]
  48. Cell Reprogram. 2020 Dec;22(6):311-327 [PMID: 32991224]
  49. J Transl Med. 2011 Mar 22;9:29 [PMID: 21418664]
  50. Am J Vet Res. 2017 Jul;78(7):867-875 [PMID: 28650243]
  51. Equine Vet J. 2010 Sep;42(6):519-27 [PMID: 20716192]
  52. Front Cell Dev Biol. 2021 Aug 18;9:661532 [PMID: 34490235]
  53. Adv Drug Deliv Rev. 2019 Jun;146:289-305 [PMID: 30605736]
  54. Stem Cell Rev Rep. 2016 Apr;12(2):245-56 [PMID: 26638159]
  55. Front Vet Sci. 2022 Jun 22;9:907616 [PMID: 35812845]
  56. Bone Joint Res. 2012 Nov 01;1(11):297-309 [PMID: 23610661]
  57. Stem Cells Dev. 2017 Jan 1;26(1):15-24 [PMID: 27712399]
  58. J Bone Joint Surg Am. 2010 Aug 18;92(10):1927-37 [PMID: 20720135]
  59. Photomed Laser Surg. 2018 Feb;36(2):83-91 [PMID: 29131717]
  60. J Extracell Vesicles. 2021 Nov;10(13):e12160 [PMID: 34724347]
  61. Front Vet Sci. 2022 Aug 08;9:901269 [PMID: 36003409]
  62. Int J Mol Sci. 2018 Feb 10;19(2): [PMID: 29439436]
  63. Biomedicines. 2022 May 30;10(6): [PMID: 35740299]
  64. Biofactors. 2017 Sep 10;43(5):633-644 [PMID: 28718997]
  65. Front Vet Sci. 2022 May 03;9:859025 [PMID: 35591873]
  66. Cells. 2021 Aug 01;10(8): [PMID: 34440728]
  67. Sci Rep. 2018 Sep 14;8(1):13799 [PMID: 30217993]
  68. Stem Cells. 2014 Jul;32(7):1865-77 [PMID: 24496748]
  69. Front Immunol. 2016 Sep 27;7:392 [PMID: 27729913]
  70. Equine Vet J. 2022 Nov;54(6):1133-1143 [PMID: 34741769]
  71. Vet J. 2001 Jul;162(1):44-55 [PMID: 11409929]
  72. Cell Med. 2012;4(1):1-11 [PMID: 23152950]
  73. Stem Cell Res Ther. 2014 Jan 24;5(1):13 [PMID: 24461709]
  74. J Am Vet Med Assoc. 2008 Jan 1;232(1):85-90 [PMID: 18167114]
  75. Stem Cells Int. 2022 May 14;2022:1779346 [PMID: 35607400]
  76. Stem Cell Res Ther. 2020 Dec 4;11(1):524 [PMID: 33276815]
  77. J Transl Med. 2014 Oct 11;12:260 [PMID: 25304688]
  78. Vet Pathol. 2015 Sep;52(5):803-18 [PMID: 26063173]
  79. Rheumatology (Oxford). 2021 Mar 2;60(3):1042-1053 [PMID: 33410465]

Word Cloud

Created with Highcharts 10.0.0OAcartilageequinealsoMSCtreatmentcanhorsemesenchymalstromalsecretomeacellularleadsarticularregenerativecellsMSCspropertiesextracellularvesiclestherapymethodspotentialtherapiesOsteoarthritisdegenerativediseaseeventuallycompletedegradationArticularlimitedintrinsiccapacityself-repairdatecurativeHumanshorsessimilaretiologyThuscontextOneHealthapproachprogresshelpimprovehealthconstitutepreclinicalstudieshumanmedicineFurthermoreaffectswelfaresignificantfinanciallossesindustrylastyearsimmunomodulatorypotentialsdemonstratedraisedseveralconcernsHowevertherapeuticcontainedparticularlyEVspromisingavenuetissueoriginculturevariousaspectsmusttakenconsiderationoptimizeImmunomodulatoryenhancedrecreatingpro-inflammatoryenvironmentmimicpathologicalsettingunusualdeserveinvestigatedAltogetherstrategiesholdsubstantialdevelopmentsecretome-basedsuitablemanagementaimminireviewsurveyrecentadvancesresearchregardEquineosteoarthritis:Strategiesenhancecell-basedosteoarthritis

Similar Articles

Cited By