Conv-CapsNet: capsule based network for COVID-19 detection through X-Ray scans.

Pulkit Sharma, Rhythm Arya, Richa Verma, Bindu Verma
Author Information
  1. Pulkit Sharma: Delhi Technological University, Delhi, India.
  2. Rhythm Arya: Delhi Technological University, Delhi, India.
  3. Richa Verma: Delhi Technological University, Delhi, India.
  4. Bindu Verma: Delhi Technological University, Delhi, India. ORCID

Abstract

Coronavirus, a virus that spread worldwide rapidly and was eventually declared a pandemic. The rapid spread made it essential to detect Coronavirus infected people to control the further spread. Recent studies show that radiological images such as X-Rays and CT scans provide essential information in detecting infection using deep learning models. This paper proposes a shallow architecture based on Capsule Networks with convolutional layers to detect COVID-19 infected persons. The proposed method combines the ability of the capsule network to understand spatial information with convolutional layers for efficient feature extraction. Due to the model's shallow architecture, it has 23 parameters to train and requires fewer training samples. The proposed system is fast and robust and correctly classifies the X-Ray images into three classes, i.e. COVID-19, No Findings, and Viral Pneumonia. Experimental results on the X-Ray dataset show that our model performs well despite having fewer samples for the training and achieved an average accuracy of 96.47 for multi-class and 97.69 for binary classification on 5-fold cross-validation. The proposed model would be useful to researchers and medical professionals for assistance and prognosis for COVID-19 infected patients.

Keywords

References

  1. Chemosphere. 2022 Feb;288(Pt 2):132569 [PMID: 34655644]
  2. Expert Syst Appl. 2021 Feb;164:114054 [PMID: 33013005]
  3. Inform Med Unlocked. 2020;19:100360 [PMID: 32501424]
  4. SN Comput Sci. 2020;1(5):274 [PMID: 33063053]
  5. SN Comput Sci. 2021;2(1):18 [PMID: 33426530]
  6. Med Hypotheses. 2020 Jul;140:109761 [PMID: 32344309]
  7. Biomed Signal Process Control. 2022 Aug;77:103778 [PMID: 35530169]
  8. Chaos Solitons Fractals. 2020 Nov;140:110122 [PMID: 32834634]
  9. Radiol Med. 2020 Aug;125(8):730-737 [PMID: 32519256]
  10. Phys Eng Sci Med. 2020 Jun;43(2):635-640 [PMID: 32524445]
  11. Front Neuroinform. 2018 Sep 20;12:62 [PMID: 30294269]
  12. Inform Med Unlocked. 2021;22:100505 [PMID: 33363252]
  13. Emerg Radiol. 2020 Dec;27(6):617-621 [PMID: 32572707]
  14. Pattern Anal Appl. 2021;24(3):1207-1220 [PMID: 33994847]
  15. SLAS Technol. 2022 Feb;27(1):63-75 [PMID: 35058196]
  16. Appl Soft Comput. 2021 Feb;99:106744 [PMID: 32989379]
  17. SN Comput Sci. 2022;3(1):17 [PMID: 34723208]
  18. SN Comput Sci. 2020;1(6):363 [PMID: 33163975]
  19. NPJ Digit Med. 2021 Jan 4;4(1):3 [PMID: 33398013]
  20. Sci Rep. 2020 Nov 11;10(1):19549 [PMID: 33177550]
  21. Pattern Recognit Lett. 2020 Oct;138:638-643 [PMID: 32958971]
  22. SN Comput Sci. 2021;2(5):384 [PMID: 34308367]
  23. Comput Methods Programs Biomed. 2022 Jun;221:106833 [PMID: 35537296]
  24. Chaos Solitons Fractals. 2020 Nov;140:110245 [PMID: 32921934]
  25. IEEE Access. 2021 Feb 10;9:30551-30572 [PMID: 34976571]
  26. Chaos Solitons Fractals. 2021 Jan;142:110495 [PMID: 33250589]
  27. Expert Syst Appl. 2021 Mar 1;165:113909 [PMID: 32868966]
  28. Inform Med Unlocked. 2020;20:100412 [PMID: 32835084]
  29. Insights Imaging. 2018 Aug;9(4):611-629 [PMID: 29934920]
  30. SN Comput Sci. 2020;1(4):206 [PMID: 33063049]
  31. SN Comput Sci. 2020;1(6):320 [PMID: 33063058]
  32. Comput Biol Med. 2021 May;132:104319 [PMID: 33799220]

Word Cloud

Created with Highcharts 10.0.0COVID-19spreadinfectedproposedX-RayCoronavirusessentialdetectshowimagesscansinformationshallowarchitecturebasedCapsuleconvolutionallayerscapsulenetworkfewertrainingsamplesmodelclassificationdetectionvirusworldwiderapidlyeventuallydeclaredpandemicrapidmadepeoplecontrolRecentstudiesradiologicalX-RaysCTprovidedetectinginfectionusingdeeplearningmodelspaperproposesNetworkspersonsmethodcombinesabilityunderstandspatialefficientfeatureextractionDuemodel's23parameterstrainrequiressystemfastrobustcorrectlyclassifiesthreeclassesieFindingsViralPneumoniaExperimentalresultsdatasetperformswelldespiteachievedaverageaccuracy9647multi-class9769binary5-foldcross-validationusefulresearchersmedicalprofessionalsassistanceprognosispatientsConv-CapsNet:networksChestX-rayMedicalimaging

Similar Articles

Cited By