The Use of Artificial Intelligence for Complete Cytoreduction Prediction in Epithelial Ovarian Cancer: A Narrative Review.

Giulia Parpinel, Maria Elena Laudani, Elisa Piovano, Paolo Zola, Fabrice Lecuru
Author Information
  1. Giulia Parpinel: Department of Surgical Sciences, 9314University of Turin, Torino, Italy. ORCID
  2. Maria Elena Laudani: Department of Surgical Sciences, 9314University of Turin, Torino, Italy.
  3. Elisa Piovano: Department of Surgical Sciences, 9314University of Turin, Torino, Italy.
  4. Paolo Zola: Department of Surgical Sciences, 9314University of Turin, Torino, Italy.
  5. Fabrice Lecuru: Breast, Gynecology and Reconstructive Surgery Unit, 419441Curie Institute, Paris, France.

Abstract

INTRODUCTION: In patients affected by epithelial ovarian cancer (EOC) complete cytoreduction (CC) has been associated with higher survival outcomes. Artificial intelligence (AI) systems have proved clinical benefice in different areas of healthcare.
OBJECTIVE: To systematically assemble and analyze the available literature on the use of AI in patients affected by EOC to evaluate its applicability to predict CC compared to traditional statistics.
MATERIAL AND METHODS: Data search was carried out through PubMed, Scopus, Ovid MEDLINE, Cochrane Library, EMBASE, international congresses and clinical trials. The main search terms were: Artificial Intelligence AND surgery/cytoreduction AND ovarian cancer. Two authors independently performed the search by October 2022 and evaluated the eligibility criteria. Studies were included when data about Artificial Intelligence and methodological data were detailed.
RESULTS: A total of 1899 cases were analyzed. Survival data were reported in 2 articles: 92% of 5-years overall survival (OS) and 73% of 2-years OS. The median area under the curve (AUC) resulted 0,62. The model accuracy for surgical resection reported in two articles reported was 77,7% and 65,8% respectively while the median AUC was 0,81. On average 8 variables were inserted in the algorithms. The most used parameters were age and Ca125.
DISCUSSION: AI revealed greater accuracy compared against the logistic regression models data. Survival predictive accuracy and AUC were lower for advanced ovarian cancers. One study analyzed the importance of factors predicting CC in recurrent epithelial ovarian cancer and disease free interval, retroperitoneal recurrence, residual disease at primary surgery and stage represented the main influencing factors. Surgical Complexity Scores resulted to be more useful in the algorithms than pre-operating imaging.
CONCLUSION: AI showed better prognostic accuracy if compared to conventional algorithms. However further studies are needed to compare the impact of different AI methods and variables and to provide survival informations.

Keywords

References

  1. J Clin Oncol. 2007 Aug 1;25(22):3302-6 [PMID: 17664478]
  2. J Pers Med. 2022 Apr 10;12(4): [PMID: 35455723]
  3. Gynecol Oncol. 2009 Jul;114(1):26-31 [PMID: 19395008]
  4. J Gynecol Oncol. 2018 Sep;29(5):e66 [PMID: 30022630]
  5. Int J Gynecol Cancer. 2017 Sep;27(7):1534-1542 [PMID: 30814245]
  6. Gynecol Oncol. 2017 May;145(2):230-235 [PMID: 28285846]
  7. Appl Bioinformatics. 2002;1(4):191-222 [PMID: 15130837]
  8. Int J Gynecol Cancer. 2020 Feb;30(2):227-232 [PMID: 31911537]
  9. Tumour Biol. 2016 Sep;37(9):12619-12626 [PMID: 27440204]
  10. Gynecol Oncol. 2011 Jan;120(1):23-8 [PMID: 20933255]
  11. Biomed Res Int. 2019 Nov 11;2019:8427042 [PMID: 31886259]
  12. Asian Pac J Cancer Prev. 2018 May 26;19(5):1319-1324 [PMID: 29802693]
  13. Int J Gynecol Cancer. 2017 Jul;27(6):1134-1140 [PMID: 28640766]
  14. Cancer Control. 2021 Jan-Dec;28:10732748211044678 [PMID: 34693730]
  15. Clin Cancer Res. 2019 May 15;25(10):3006-3015 [PMID: 30979733]
  16. J Clin Oncol. 2002 Mar 1;20(5):1248-59 [PMID: 11870167]
  17. BJOG. 2009 Feb;116(3):372-80 [PMID: 19187369]
  18. Gynecol Oncol. 2008 Feb;108(2):271-5 [PMID: 18164380]
  19. PLoS One. 2017 Oct 26;12(10):e0186906 [PMID: 29073279]
  20. Eur J Cancer Prev. 2019 Mar;28(2):81-86 [PMID: 29360648]
  21. Chin Clin Oncol. 2020 Oct;9(5):70 [PMID: 32954737]
  22. N Engl J Med. 2021 Dec 2;385(23):2123-2131 [PMID: 34874631]
  23. World J Surg Oncol. 2018 Feb 23;16(1):37 [PMID: 29471831]
  24. Gynecol Oncol. 2017 Apr;145(1):27-31 [PMID: 28209497]
  25. Ann Surg Oncol. 2015 Nov;22(12):3970-5 [PMID: 25752894]
  26. Ann Surg Oncol. 2015 Dec;22(13):4217-23 [PMID: 25808099]
  27. Ann Surg Oncol. 2006 Dec;13(12):1702-10 [PMID: 17009163]
  28. Cancer. 1997 Apr 1;79(7):1338-42 [PMID: 9083155]
  29. Lancet Oncol. 2017 Jun;18(6):779-791 [PMID: 28438473]
  30. Ann Surg. 1995 Feb;221(2):124-32 [PMID: 7857141]
  31. J Surg Oncol. 2010 Jan 1;101(1):13-7 [PMID: 20025071]
  32. Gynecol Oncol. 2006 Dec;103(3):1083-90 [PMID: 16890277]
  33. Ann Surg Oncol. 2012 Feb;19(2):597-604 [PMID: 21732142]
  34. Gynecol Oncol. 2015 Jul;138(1):70-7 [PMID: 25913130]
  35. J Cancer. 2016 Aug 11;7(13):1772-1779 [PMID: 27698915]
  36. J Ovarian Res. 2020 Sep 29;13(1):117 [PMID: 32993745]
  37. CA Cancer J Clin. 2019 Jul;69(4):280-304 [PMID: 31099893]
  38. J Ovarian Res. 2022 May 24;15(1):64 [PMID: 35610701]
  39. Ann Surg Oncol. 2006 Aug;13(8):1156-61 [PMID: 16791447]
  40. Ann Surg Oncol. 2021 Jan;28(1):244-251 [PMID: 32472412]
  41. Asian Pac J Cancer Prev. 2016;17(3):1445-8 [PMID: 27039787]
  42. Gynecol Oncol. 2009 Jan;112(1):11-5 [PMID: 19119502]
  43. Int J Gynecol Cancer. 2015 Mar;25(3):407-15 [PMID: 25695545]
  44. Gynecol Oncol. 2007 Jul;106(1):69-74 [PMID: 17397910]
  45. Obstet Gynecol. 2006 Jan;107(1):77-85 [PMID: 16394043]
  46. Gynecol Oncol. 2019 Mar;152(3):554-559 [PMID: 30558972]
  47. Artif Intell Med. 2019 Mar;94:42-53 [PMID: 30871682]
  48. Lancet Oncol. 2021 Apr;22(4):439-449 [PMID: 33705695]
  49. J Clin Oncol. 2007 Feb 1;25(4):384-9 [PMID: 17264334]
  50. Cancer. 2006 May 1;106(9):1933-9 [PMID: 16572412]

MeSH Term

Humans
Female
Carcinoma, Ovarian Epithelial
Artificial Intelligence
Cytoreduction Surgical Procedures
Neoplasm Recurrence, Local
Ovarian Neoplasms

Word Cloud

Created with Highcharts 10.0.0ovarianAIcancerArtificialdataaccuracyepithelialCCsurvivalcomparedANDsearchIntelligencereportedAUCalgorithmspatientsaffectedEOCcytoreductionintelligenceclinicaldifferentmainanalyzedSurvivalOSmedianresulted0variablesfactorsdiseasesurgeryINTRODUCTION:completeassociatedhigheroutcomessystemsprovedbeneficeareashealthcareOBJECTIVE:systematicallyassembleanalyzeavailableliteratureuseevaluateapplicabilitypredicttraditionalstatisticsMATERIALMETHODS:DatacarriedPubMedScopusOvidMEDLINECochraneLibraryEMBASEinternationalcongressestrialstermswere:surgery/cytoreductionTwoauthorsindependentlyperformedOctober2022evaluatedeligibilitycriteriaStudiesincludedmethodologicaldetailedRESULTS:total1899cases2articles:92%5-yearsoverall73%2-yearsareacurve62modelsurgicalresectiontwoarticles777%658%respectively81average8insertedusedparametersageCa125DISCUSSION:revealedgreaterlogisticregressionmodelspredictiveloweradvancedcancersOnestudyimportancepredictingrecurrentfreeintervalretroperitonealrecurrenceresidualprimarystagerepresentedinfluencingSurgicalComplexityScoresusefulpre-operatingimagingCONCLUSION:showedbetterprognosticconventionalHoweverstudiesneededcompareimpactmethodsprovideinformationsUseCompleteCytoreductionPredictionEpithelialOvarianCancer:NarrativeReviewalgorithmartificial

Similar Articles

Cited By (4)