How to avoid a local epidemic becoming a global pandemic.

Nils Chr Stenseth, Rudolf Schlatte, Xiaoli Liu, Roger Pielke, Ruiyun Li, Bin Chen, Ottar N Bj��rnstad, Dimitri Kusnezov, George F Gao, Christophe Fraser, Jason D Whittington, Yuqi Bai, Ke Deng, Peng Gong, Dabo Guan, Yixiong Xiao, Bing Xu, Einar Broch Johnsen
Author Information
  1. Nils Chr Stenseth: Center for Pandemics and One Health Research, Sustainable Health Unit (SUSTAINIT), Faculty of Medicine, Oslo 0316, Norway. ORCID
  2. Rudolf Schlatte: Department of Informatics, University of Oslo, Oslo 0316, Norway.
  3. Xiaoli Liu: Department of Computer Science, University of Helsinki, 00560 Helsinki, Finland.
  4. Roger Pielke: Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway.
  5. Ruiyun Li: Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway.
  6. Bin Chen: Future Urbanity & Sustainable Environment (FUSE) Lab, Division of Landscape Architecture, Faculty of Architecture, University of Hong Kong, Hong Kong 999077, China. ORCID
  7. Ottar N Bj��rnstad: Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway. ORCID
  8. Dimitri Kusnezov: Deputy Under Secretary, Artificial Intelligence & Technology Office, US Department of Energy, Washington, DC 20585.
  9. George F Gao: Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
  10. Christophe Fraser: Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, UK.
  11. Jason D Whittington: Center for Pandemics and One Health Research, Sustainable Health Unit (SUSTAINIT), Faculty of Medicine, Oslo 0316, Norway. ORCID
  12. Yuqi Bai: Department of Earth System Science, Tsinghua University, Beijing 100084, China. ORCID
  13. Ke Deng: Center for Statistical Science, Tsinghua University, Beijing 100084, China.
  14. Peng Gong: Department of Earth Sciences, University of Hong Kong, Hong Kong 999077, China. ORCID
  15. Dabo Guan: Department of Earth System Science, Tsinghua University, Beijing 100084, China.
  16. Yixiong Xiao: Business Intelligence Lab, Baidu Research, Beijing 100193, China.
  17. Bing Xu: Department of Earth System Science, Tsinghua University, Beijing 100084, China. ORCID
  18. Einar Broch Johnsen: Department of Informatics, University of Oslo, Oslo 0316, Norway.

Abstract

Here, we combine international air travel passenger data with a standard epidemiological model of the initial 3 mo of the COVID-19 pandemic (January through March 2020; toward the end of which the entire world locked down). Using the information available during this initial phase of the pandemic, our model accurately describes the main features of the actual global development of the pandemic demonstrated by the high degree of coherence between the model and global data. The validated model allows for an exploration of alternative policy efficacies (reducing air travel and/or introducing different degrees of compulsory immigration quarantine upon arrival to a country) in delaying the global spread of SARS-CoV-2 and thus is suggestive of similar efficacy in anticipating the spread of future global disease outbreaks. We show that a lesson from the recent pandemic is that reducing air travel globally is more effective in reducing the global spread than adopting immigration quarantine. Reducing air travel out of a source country has the most important effect regarding the spreading of the disease to the rest of the world. Based upon our results, we propose a digital twin as a further developed tool to inform future pandemic decision-making to inform measures intended to control the spread of disease agents of potential future pandemics. We discuss the design criteria for such a digital twin model as well as the feasibility of obtaining access to the necessary online data on international air travel.

Keywords

References

  1. Lancet. 2020 Feb 15;395(10223):470-473 [PMID: 31986257]
  2. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  3. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  4. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  5. J Theor Biol. 1984 Oct 21;110(4):665-79 [PMID: 6521486]
  6. J Med Virol. 2020 Nov;92(11):2543-2550 [PMID: 32470164]
  7. Patterns (N Y). 2021 Oct 08;2(10):100359 [PMID: 34693377]
  8. Epidemics. 2020 Dec;33:100400 [PMID: 33130412]
  9. PLoS Comput Biol. 2021 Jul 12;17(7):e1009146 [PMID: 34252083]
  10. J Theor Biol. 2021 May 21;517:110621 [PMID: 33587929]
  11. PLoS Comput Biol. 2023 Jan 23;19(1):e1010860 [PMID: 36689468]
  12. China CDC Wkly. 2020 Jan 24;2(4):61-62 [PMID: 34594763]
  13. Science. 2020 May 1;368(6490):493-497 [PMID: 32213647]
  14. PLoS Comput Biol. 2021 Jul 26;17(7):e1009149 [PMID: 34310589]
  15. PLoS Med. 2021 Oct 19;18(10):e1003793 [PMID: 34665805]
  16. Lancet Public Health. 2020 May;5(5):e261-e270 [PMID: 32220655]
  17. Euro Surveill. 2020 Feb;25(5): [PMID: 32046819]
  18. Science. 2009 Dec 4;326(5958):1362-7 [PMID: 19965751]
  19. Epidemics. 2018 Dec;25:1-8 [PMID: 29853411]
  20. Emerg Infect Dis. 2021 May;27(5):1274-1278 [PMID: 33734063]
  21. Science. 2021 Feb 19;371(6531): [PMID: 33323424]
  22. N Engl J Med. 2020 Mar 26;382(13):1199-1207 [PMID: 31995857]
  23. Science. 2020 May 8;368(6491):638-642 [PMID: 32234804]
  24. J Math Biol. 1990;28(4):365-82 [PMID: 2117040]
  25. J R Soc Interface. 2021 Apr;18(177):20210063 [PMID: 33878278]
  26. Front Public Health. 2021 Aug 02;9:694705 [PMID: 34409008]
  27. J R Stat Soc Ser A Stat Soc. 2022 Nov;185(Suppl 1):S112-S130 [PMID: 37063605]
  28. Humanit Soc Sci Commun. 2022;9(1):239 [PMID: 35856700]
  29. Science. 2020 May 1;368(6490):489-493 [PMID: 32179701]
  30. Lancet. 2020 Feb 29;395(10225):689-697 [PMID: 32014114]
  31. J Travel Med. 2020 Mar 13;27(2): [PMID: 31943059]
  32. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  33. Engineering (Beijing). 2021 Jul;7(7):914-923 [PMID: 33972889]
  34. Int J Environ Res Public Health. 2020 Dec 21;17(24): [PMID: 33371309]
  35. Nat Commun. 2019 Sep 2;10(1):3932 [PMID: 31477707]
  36. Lancet Public Health. 2020 Jul;5(7):e375-e385 [PMID: 32502389]
  37. PLoS Med. 2020 Jul 17;17(7):e1003193 [PMID: 32678827]
  38. J Travel Med. 2020 Mar 13;27(2): [PMID: 32052846]
  39. Acta Biomed. 2020 Mar 19;91(1):157-160 [PMID: 32191675]
  40. J R Soc Interface. 2020 Jun;17(167):20190809 [PMID: 32546112]
  41. Epidemics. 2020 Sep;32:100397 [PMID: 32540727]
  42. Nat Commun. 2019 Jul 15;10(1):3102 [PMID: 31308372]
  43. Stat Med. 1988 Nov;7(11):1147-55 [PMID: 3201040]
  44. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  45. Nat Commun. 2021 Jan 12;12(1):311 [PMID: 33436574]

MeSH Term

Humans
Pandemics
COVID-19
SARS-CoV-2
Disease Outbreaks
Air Travel

Word Cloud

Created with Highcharts 10.0.0modelpandemicglobalairtraveldataspreadreducingfuturediseasedigitaltwininternationalinitialworldimmigrationquarantineuponcountryinformcombinepassengerstandardepidemiological3 moCOVID-19JanuaryMarch2020towardendentirelockedUsinginformationavailablephaseaccuratelydescribesmainfeaturesactualdevelopmentdemonstratedhighdegreecoherencevalidatedallowsexplorationalternativepolicyefficaciesand/orintroducingdifferentdegreescompulsoryarrivaldelayingSARS-CoV-2thussuggestivesimilarefficacyanticipatingoutbreaksshowlessonrecentgloballyeffectiveadoptingReducingsourceimportanteffectregardingspreadingrestBasedresultsproposedevelopedtooldecision-makingmeasuresintendedcontrolagentspotentialpandemicsdiscussdesigncriteriawellfeasibilityobtainingaccessnecessaryonlineavoidlocalepidemicbecomingDiseaseXcoupledsimulationscienceepidemiology

Similar Articles

Cited By