Tracking of Mutational Signature of SARS-CoV-2 Omicron on Distinct Continents and Little Difference was Found.

Shu-Yue Zheng, Yun-Peng Zhang, Yu-Xin Liu, Wei Zhao, Xiang-Lei Peng, Yan-Peng Zheng, Yuan-Hui Fu, Jie-Mei Yu, Jin-Sheng He
Author Information
  1. Shu-Yue Zheng: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
  2. Yun-Peng Zhang: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
  3. Yu-Xin Liu: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
  4. Wei Zhao: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
  5. Xiang-Lei Peng: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
  6. Yan-Peng Zheng: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
  7. Yuan-Hui Fu: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
  8. Jie-Mei Yu: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China. ORCID
  9. Jin-Sheng He: College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China. ORCID

Abstract

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.

Keywords

References

  1. Cell Discov. 2020 Oct 29;6(1):76 [PMID: 33298872]
  2. Viruses. 2022 Oct 19;14(10): [PMID: 36298851]
  3. Sci Rep. 2020 Oct 26;10(1):18289 [PMID: 33106569]
  4. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34121111]
  5. Nature. 2022 Apr;604(7906):553-556 [PMID: 35240676]
  6. Nat Microbiol. 2022 Aug;7(8):1161-1179 [PMID: 35798890]
  7. Cell Rep. 2021 Jun 29;35(13):109292 [PMID: 34166617]
  8. Viruses. 2022 Mar 29;14(4): [PMID: 35458441]
  9. Nat Med. 2021 Sep;27(9):1518-1524 [PMID: 34504335]
  10. Mol Biol Evol. 2010 Mar;27(3):650-60 [PMID: 19837657]
  11. Elife. 2021 Aug 13;10: [PMID: 34387545]
  12. Nat Rev Mol Cell Biol. 2018 Jan;19(1):20-30 [PMID: 29018283]
  13. Glob Chall. 2017 Jan 10;1(1):33-46 [PMID: 31565258]
  14. Virus Evol. 2021 Dec 13;7(2):veab104 [PMID: 35039785]
  15. Cell Res. 2022 Jun;32(6):593-595 [PMID: 35418218]
  16. Curr Biol. 2021 Jul 26;31(14):R918-R929 [PMID: 34314723]
  17. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):648-663 [PMID: 33581339]
  18. Nat Rev Microbiol. 2021 Jul;19(7):409-424 [PMID: 34075212]
  19. Nature. 2020 Aug;584(7821):450-456 [PMID: 32698192]
  20. Front Microbiol. 2021 Feb 17;12:612432 [PMID: 33746914]
  21. MedComm (2020). 2022 Mar 16;3(1):e126 [PMID: 35317190]
  22. Nat Med. 2021 Apr;27(4):620-621 [PMID: 33558724]
  23. mSphere. 2020 Jun 24;5(3): [PMID: 32581081]
  24. BMC Med. 2022 Mar 3;20(1):102 [PMID: 35236358]
  25. Front Microbiol. 2021 Oct 07;12:750725 [PMID: 34691002]
  26. Cell. 2014 Mar 13;156(6):1324-1335 [PMID: 24630730]
  27. Natl Sci Rev. 2021 Dec 04;9(2):nwab220 [PMID: 35211321]
  28. Lancet. 2020 Aug 29;396(10251):603-611 [PMID: 32822564]
  29. Cell Mol Immunol. 2022 Feb;19(2):293-295 [PMID: 35017716]
  30. Nature. 2022 Aug;608(7923):603-608 [PMID: 35790190]
  31. Front Public Health. 2022 Aug 24;10:952916 [PMID: 36091499]
  32. Nature. 2022 Feb;602(7898):676-681 [PMID: 35016198]
  33. Lancet. 2021 Dec 11;398(10317):2126-2128 [PMID: 34871545]
  34. Nature. 2020 May;581(7807):215-220 [PMID: 32225176]
  35. Sci Adv. 2020 Jun 17;6(25):eabb5813 [PMID: 32596474]
  36. BMC Med Genomics. 2016 Dec 5;9(Suppl 3):69 [PMID: 28117657]
  37. Science. 2021 Mar 12;371(6534):1139-1142 [PMID: 33536258]
  38. Cell. 2021 Apr 29;184(9):2332-2347.e16 [PMID: 33761326]

MeSH Term

Humans
COVID-19
SARS-CoV-2
Mutation
Amino Acid Substitution

Word Cloud

Similar Articles

Cited By