The role of temperature in shaping mosquitoes life history traits in its southern limit of distribution (Patagonia-Argentina).

M G Grech, M L Miserendino, W R Almirón
Author Information
  1. M G Grech: Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET and Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina.
  2. M L Miserendino: Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET and Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina.
  3. W R Almirón: Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Investigaciones Entomológicas de Córdoba, Córdoba, Argentina.

Abstract

There is substantial evidence showing that temperature have a great impact on insects behavior, phenology and life histories. Because of mosquito global importance as disease vectors, in temperate regions where climatic conditions could be only borderline suitable for mosquito development, there is a growing interest in understanding the effect of temperature shifts on vital statistics to more accurately define how such changes could impact distribution and abundance patterns, as well as disease transmission cycles. We determined the role of ambient temperature under fluctuating conditions in shaping (Diptera: Culicidae) life history traits, and estimated its development threshold and physiological time, in its southern limit of distribution in the Argentine Patagonia region. Four horizontal life tables were conducted under natural fluctuating temperature range in Esquel city (42°S - 71°W; 563 m a.s.l.), during spring-summer (17°C), summer (15.4°C), summer-autumn (12.7°C) and autumn-winter (5.6°C) seasons. Larvae, pupae and adult traits were recorded. The mean duration of the experiments varied between 28 to ≅100 days for spring-summer and autumn-winter seasons. Only during the cold season experiment pupae experienced the most severe temperatures and freeze-thaw cycles, and failed to reach adult stage. We found that larva and pupa development time, adult emergence time and longevity significantly increased with decreasing temperatures, while larval survival was greatest at an intermediate temperature and decreased toward low and high values. Also, protandry was observed and males emerge 2 days before females across seasons. Temperature development threshold and physiological time estimated for larva + pupa were 5.98°C and 211.24°C-days. Our study contributes to a growing body of knowledge by examining the effect of seasonal changes in temperature on mosquito life history traits. Results obtained here can be applied as useful parameters in the development of population dynamic models, improving current mosquito control strategies in cold-temperate regions.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.20338245

References

  1. J Vector Ecol. 2007 Jun;32(1):106-11 [PMID: 17639632]
  2. J Med Entomol. 1990 Sep;27(5):892-8 [PMID: 2231624]
  3. Sci Rep. 2020 Jun 1;10(1):8822 [PMID: 32483233]
  4. J Med Entomol. 2012 Jul;49(4):825-32 [PMID: 22897042]
  5. Nat Immunol. 2020 May;21(5):479-483 [PMID: 32313242]
  6. Parasitol Res. 2014 Nov;113(11):4315-9 [PMID: 25284257]
  7. Front Microbiol. 2020 Sep 25;11:584846 [PMID: 33101259]
  8. PLoS Negl Trop Dis. 2019 Jul 5;13(7):e0007528 [PMID: 31276467]
  9. J Med Entomol. 2017 Jan;54(1):106-113 [PMID: 28082637]
  10. J Med Entomol. 2014 Jan;51(1):55-62 [PMID: 24605453]
  11. J Insect Physiol. 2019 Aug - Sep;117:103887 [PMID: 31125550]
  12. J Theor Biol. 2016 Jul 7;400:65-79 [PMID: 27084359]
  13. Mem Inst Oswaldo Cruz. 1996 Jan-Feb;91(1):1-9 [PMID: 8734943]
  14. Epidemiol Rev. 1995;17(2):321-35 [PMID: 8654514]
  15. Sci Rep. 2018 Mar 13;8(1):4414 [PMID: 29535362]
  16. BMC Ecol. 2014 Feb 05;14:3 [PMID: 24495345]
  17. J Therm Biol. 2015 Oct;53:180-97 [PMID: 26590471]
  18. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6668-72 [PMID: 18458348]
  19. Acta Trop. 2015 Jun;146:1-6 [PMID: 25733491]
  20. Comp Biochem Physiol A Mol Integr Physiol. 2011 Feb;158(2):229-34 [PMID: 21074633]
  21. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33431560]
  22. Elife. 2021 Aug 17;10: [PMID: 34402424]
  23. Parasit Vectors. 2019 May 7;12(1):214 [PMID: 31064397]
  24. Neotrop Entomol. 2011 Jan-Feb;40(1):138-42 [PMID: 21442140]
  25. Parasit Vectors. 2013 Dec 12;6:351 [PMID: 24330720]
  26. Physiol Biochem Zool. 2012 Nov-Dec;85(6):594-606 [PMID: 23099457]
  27. Med Vet Entomol. 2000 Mar;14(1):31-7 [PMID: 10759309]
  28. J Exp Biol. 2004 Mar;207(Pt 8):1287-94 [PMID: 15010479]
  29. J Am Mosq Control Assoc. 2018 Jun;34(2):93-98 [PMID: 31442161]
  30. Bull World Health Organ. 2000;78(9):1136-47 [PMID: 11019462]
  31. Biol Rev Camb Philos Soc. 2021 Dec;96(6):2461-2475 [PMID: 34128582]

Word Cloud

Created with Highcharts 10.0.0temperaturedevelopmentlifetimemosquitotraitsdistributionfluctuatinghistorythresholdseasonsadultimpactdiseaseregionsconditionsgrowingeffectstatisticschangescyclesroleshapingestimatedphysiologicalsouthernlimitregionspring-summerautumn-winter5pupaedaystemperaturesTemperaturesubstantialevidenceshowinggreatinsectsbehaviorphenologyhistoriesglobalimportancevectorstemperateclimaticborderlinesuitableinterestunderstandingshiftsvitalaccuratelydefineabundancepatternswelltransmissiondeterminedambientDiptera:CulicidaeArgentinePatagoniaFourhorizontaltablesconductednaturalrangeEsquelcity42°S-71°W563 masl17°Csummer154°Csummer-autumn127°C6°CLarvaerecordedmeandurationexperimentsvaried28≅100coldseasonexperimentexperiencedseverefreeze-thawfailedreachstagefoundlarvapupaemergencelongevitysignificantlyincreaseddecreasinglarvalsurvivalgreatestintermediatedecreasedtowardlowhighvaluesAlsoprotandryobservedmalesemerge2femalesacrosslarva + pupa98°C21124°C-daysstudycontributesbodyknowledgeexaminingseasonalResultsobtainedcanappliedusefulparameterspopulationdynamicmodelsimprovingcurrentcontrolstrategiescold-temperatemosquitoesPatagonia-ArgentinaNaturalPhysiologicalTemperateVital

Similar Articles

Cited By (1)