Actin crosslinking by α-actinin averts viscous dissipation of myosin force transmission in stress fibers.

Hiroki Katsuta, Satoru Okuda, Kazuaki Nagayama, Hiroaki Machiyama, Satoru Kidoaki, Masashi Kato, Masahiro Sokabe, Takaki Miyata, Hiroaki Hirata
Author Information
  1. Hiroki Katsuta: Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
  2. Satoru Okuda: WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan.
  3. Kazuaki Nagayama: Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan.
  4. Hiroaki Machiyama: Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan.
  5. Satoru Kidoaki: Division of Applied Molecular Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan.
  6. Masashi Kato: Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
  7. Masahiro Sokabe: Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
  8. Takaki Miyata: Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
  9. Hiroaki Hirata: Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.

Abstract

Contractile force generated in actomyosin stress fibers (SFs) is transmitted along SFs to the extracellular matrix (ECM), which contributes to cell migration and sensing of ECM rigidity. In this study, we show that efficient force transmission along SFs relies on actin crosslinking by α-actinin. Upon reduction of α-actinin-mediated crosslinks, the myosin II activity induced flows of actin filaments and myosin II along SFs, leading to a decrease in traction force exertion to ECM. The fluidized SFs maintained their cable integrity probably through enhanced actin polymerization throughout SFs. A computational modeling analysis suggested that lowering the density of actin crosslinks caused viscous slippage of actin filaments in SFs and, thereby, dissipated myosin-generated force transmitting along SFs. As a cellular scale outcome, α-actinin depletion attenuated the ECM-rigidity-dependent difference in cell migration speed, which suggested that α-actinin-modulated SF mechanics is involved in the cellular response to ECM rigidity.

Keywords

References

  1. J Cell Biol. 1996 Jun;133(6):1403-15 [PMID: 8682874]
  2. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1506-11 [PMID: 22307605]
  3. J Cell Biol. 2012 Feb 6;196(3):363-74 [PMID: 22291038]
  4. Mol Biol Cell. 2016 Nov 7;27(22):3471-3479 [PMID: 27122603]
  5. J Am Soc Nephrol. 2015 Feb;26(2):258-69 [PMID: 25060060]
  6. Biophys J. 2012 Nov 21;103(10):2082-92 [PMID: 23200042]
  7. J Cell Sci. 2016 Apr 1;129(7):1293-304 [PMID: 27037413]
  8. Cell Motil Cytoskeleton. 1989;14(4):527-43 [PMID: 2696599]
  9. Biophys J. 2013 Jan 8;104(1):19-29 [PMID: 23332055]
  10. J Cell Physiol. 2014 Jun;229(6):696-704 [PMID: 24647813]
  11. Dev Biol. 2009 Jan 15;325(2):374-85 [PMID: 19027000]
  12. J Cell Sci. 2015 Jun 15;128(12):2209-17 [PMID: 26021351]
  13. Science. 1980 Apr 11;208(4440):177-9 [PMID: 6987736]
  14. Biochem J. 2014 Apr 1;459(1):1-13 [PMID: 24627985]
  15. Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12817-12825 [PMID: 32444491]
  16. Connect Tissue Res. 2015 Feb;56(1):1-8 [PMID: 25047058]
  17. Annu Rev Cell Dev Biol. 2012;28:29-58 [PMID: 22804577]
  18. Nat Rev Mol Cell Biol. 2009 Jan;10(1):63-73 [PMID: 19197333]
  19. Nat Rev Mol Cell Biol. 2017 Dec;18(12):728-742 [PMID: 29115301]
  20. Biophys J. 2008 Jan 1;94(1):207-20 [PMID: 17827246]
  21. Biophys J. 2009 Jul 8;97(1):83-9 [PMID: 19580746]
  22. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25532-25542 [PMID: 32989126]
  23. Phys Rev Lett. 2010 Dec 3;105(23):238101 [PMID: 21231506]
  24. Nat Cell Biol. 2016 Jan;18(1):33-42 [PMID: 26619148]
  25. Nat Cell Biol. 2001 May;3(5):466-72 [PMID: 11331874]
  26. Dev Cell. 2020 Nov 23;55(4):468-482.e7 [PMID: 33058779]
  27. Exp Cell Res. 2013 May 1;319(8):1124-35 [PMID: 23454549]
  28. Cell. 1992 Aug 7;70(3):389-99 [PMID: 1643657]
  29. Front Physiol. 2020 Jun 26;11:701 [PMID: 32676037]
  30. Nat Rev Mol Cell Biol. 2017 Dec;18(12):758-770 [PMID: 28951564]
  31. Exp Cell Res. 2016 Apr 10;343(1):42-53 [PMID: 26524510]
  32. Exp Cell Res. 2016 Apr 10;343(1):14-20 [PMID: 26519907]
  33. Nat Genet. 2000 Mar;24(3):251-6 [PMID: 10700177]
  34. Mol Biol Cell. 2000 Oct;11(10):3617-27 [PMID: 11029059]
  35. J Cell Biol. 2005 Oct 24;171(2):209-15 [PMID: 16247023]
  36. Biomech Model Mechanobiol. 2016 Jun;15(3):511-23 [PMID: 26206449]
  37. Nature. 2011 Jun 08;474(7350):179-83 [PMID: 21654799]
  38. Proc Natl Acad Sci U S A. 2015 May 26;112(21):6619-24 [PMID: 25918384]
  39. J Cell Sci. 2008 Sep 1;121(Pt 17):2795-804 [PMID: 18682496]
  40. Biophys J. 1996 Apr;70(4):2008-22 [PMID: 8785360]
  41. Clin Transl Med. 2018 Aug 13;7(1):23 [PMID: 30101371]
  42. J Cell Biol. 1980 Aug;86(2):608-15 [PMID: 7190570]
  43. Cell Mol Life Sci. 2008 Sep;65(17):2688-701 [PMID: 18488141]
  44. Nat Cell Biol. 2015 Aug;17(8):955-63 [PMID: 26121555]
  45. J Cell Sci. 2016 Oct 1;129(19):3574-3582 [PMID: 27528401]
  46. Nat Commun. 2017 Jun 12;8:15817 [PMID: 28604737]
  47. Nat Rev Mol Cell Biol. 2009 Nov;10(11):778-90 [PMID: 19851336]
  48. Biophys J. 2009 Jun 3;96(11):4725-32 [PMID: 19486695]
  49. Structure. 2001 Jul 3;9(7):597-604 [PMID: 11470434]
  50. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1361-70 [PMID: 23515331]
  51. Methods Cell Biol. 2008;89:487-519 [PMID: 19118688]
  52. PLoS One. 2017 Nov 14;12(11):e0187853 [PMID: 29136040]
  53. J Cell Sci. 2007 Oct 15;120(Pt 20):3491-9 [PMID: 17928305]
  54. Cell Rep. 2017 Dec 5;21(10):2714-2723 [PMID: 29212020]
  55. Am J Physiol. 1998 Jun;274(6):C1563-72 [PMID: 9611121]
  56. Exp Cell Res. 2013 Oct 1;319(16):2418-23 [PMID: 23664834]
  57. Trends Cell Biol. 2014 Oct;24(10):575-83 [PMID: 24933506]
  58. Cell. 2006 Aug 25;126(4):677-89 [PMID: 16923388]
  59. Cell. 1975 Nov;6(3):289-98 [PMID: 802682]
  60. Micron. 2015 Jan;68:47-53 [PMID: 25262166]
  61. Science. 2003 Dec 5;302(5651):1704-9 [PMID: 14657486]
  62. Biophys J. 2006 May 15;90(10):3762-73 [PMID: 16500961]
  63. Br J Pharmacol. 1993 Jul;109(3):703-12 [PMID: 8395295]
  64. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021925 [PMID: 17930083]
  65. J Cell Biol. 2008 Dec 15;183(6):999-1005 [PMID: 19075110]
  66. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8620-5 [PMID: 26077909]
  67. J Biol Chem. 2018 Sep 14;293(37):14520-14533 [PMID: 30049798]
  68. Dev Cell. 2010 Sep 14;19(3):365-76 [PMID: 20833360]
  69. Dev Cell. 2007 Oct;13(4):554-65 [PMID: 17925230]
  70. Trends Cell Biol. 2012 Oct;22(10):536-45 [PMID: 22871642]
  71. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6933-8 [PMID: 22509005]
  72. Mol Biol Cell. 2017 Jul 7;28(14):1901-1911 [PMID: 28468976]
  73. Dev Cell. 2015 Mar 9;32(5):561-73 [PMID: 25684354]
  74. Mol Biol Cell. 2007 Feb;18(2):605-16 [PMID: 17151359]
  75. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1517-1522 [PMID: 29378953]
  76. Ultramicroscopy. 2000 Feb;82(1-4):253-8 [PMID: 10741677]
  77. J R Soc Interface. 2019 Jul 26;16(156):20190022 [PMID: 31337301]
  78. Biomed Res Int. 2017;2017:5158961 [PMID: 28191463]
  79. Biophys J. 2010 Nov 3;99(9):2775-83 [PMID: 21044574]
  80. Mol Biol Cell. 2008 Nov;19(11):5006-18 [PMID: 18799629]
  81. J Cell Biol. 1997 Mar 24;136(6):1287-305 [PMID: 9087444]
  82. J Mol Biol. 2011 Sep 2;411(5):1062-71 [PMID: 21762701]
  83. Nat Cell Biol. 2018 Jun;20(6):688-698 [PMID: 29802406]
  84. Trends Cell Biol. 2005 Feb;15(2):84-91 [PMID: 15695095]
  85. J Cell Sci. 2006 Dec 15;119(Pt 24):5204-14 [PMID: 17158922]
  86. J Theor Biol. 1991 May 21;150(2):193-200 [PMID: 1832473]
  87. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011918 [PMID: 17677505]
  88. J Mech Behav Biomed Mater. 2020 Oct;110:103935 [PMID: 32957229]
  89. Science. 2007 Jan 5;315(5808):111-5 [PMID: 17204653]
  90. Annu Rev Physiol. 1987;49:637-54 [PMID: 2952053]
  91. J Phys Condens Matter. 2010 May 19;22(19):194112 [PMID: 21386438]
  92. Biochem J. 2012 Aug 1;445(3):323-32 [PMID: 22587391]
  93. Curr Opin Cell Biol. 2007 Feb;19(1):101-7 [PMID: 17174543]
  94. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5328-33 [PMID: 22431603]
  95. J Biol Chem. 2001 Sep 14;276(37):34759-67 [PMID: 11395501]
  96. Cell. 2012 Dec 21;151(7):1513-27 [PMID: 23260139]
  97. Biophys J. 2006 Dec 1;91(11):4296-305 [PMID: 16963507]
  98. Sci Rep. 2019 Oct 29;9(1):15565 [PMID: 31664178]
  99. Biochim Biophys Acta Mol Cell Res. 2019 Jan;1866(1):2-15 [PMID: 30076859]
  100. Phys Rev Lett. 2013 Jan 4;110(1):018103 [PMID: 23383843]
  101. Nat Cell Biol. 2008 Sep;10(9):1039-50 [PMID: 19160484]
  102. J Cell Biol. 1991 Aug;114(3):481-91 [PMID: 1907287]
  103. Biophys J. 1994 Mar;66(3 Pt 1):801-9 [PMID: 8011912]
  104. J Cell Biol. 2010 Jan 25;188(2):287-97 [PMID: 20100912]
  105. Nat Cell Biol. 2016 May;18(5):540-8 [PMID: 27065098]
  106. Methods Cell Biol. 2014;123:367-94 [PMID: 24974038]

Word Cloud

Created with Highcharts 10.0.0SFsforceactinalongECMα-actininmyosinstressfiberscellmigrationrigiditytransmissioncrosslinkingcrosslinksIIfilamentssuggestedviscouscellularContractilegeneratedactomyosintransmittedextracellularmatrixcontributessensingstudyshowefficientreliesUponreductionα-actinin-mediatedactivityinducedflowsleadingdecreasetractionexertionfluidizedmaintainedcableintegrityprobablyenhancedpolymerizationthroughoutcomputationalmodelinganalysisloweringdensitycausedslippagetherebydissipatedmyosin-generatedtransmittingscaleoutcomedepletionattenuatedECM-rigidity-dependentdifferencespeedα-actinin-modulatedSFmechanicsinvolvedresponseActinavertsdissipationBiologicalsciencesBiophysicsCellbiology

Similar Articles

Cited By