Potential benefits of a blend of essential oils on metabolism, digestibility, organ development and gene expression of dairy calves.

Joana P Campolina, Sandra Gesteira Coelho, Anna Luiza Belli, Luiz F Martins Neves, Fernanda S Machado, Luiz G R Pereira, Thierry R Tomich, Wanessa A Carvalho, Raquel M P Daibert, Daniele R L Reis, Suely F Costa, Alessandra L Voorsluys, David V Jacob, Mariana M Campos
Author Information
  1. Joana P Campolina: Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
  2. Sandra Gesteira Coelho: Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
  3. Anna Luiza Belli: Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
  4. Luiz F Martins Neves: Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
  5. Fernanda S Machado: Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil.
  6. Luiz G R Pereira: Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil.
  7. Thierry R Tomich: Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil.
  8. Wanessa A Carvalho: Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil.
  9. Raquel M P Daibert: Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil.
  10. Daniele R L Reis: Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil.
  11. Suely F Costa: Departmento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
  12. Alessandra L Voorsluys: Adisseo, Campinas, São Paulo, Brazil.
  13. David V Jacob: Adisseo, Campinas, São Paulo, Brazil.
  14. Mariana M Campos: Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil. mariana.campos@embrapa.br.

Abstract

The objective of this study was to evaluate blood cells and metabolites, insulin-like growth factor-1 (IGF-1), digestibility, internal organs weight and histology, gene expression, and spleen cell proliferation of pre-weaned bull calves supplemented with a blend of essential oils in milk replacer (MR). Sixteen newborn Holstein × Gyr crossbred dairy bull calves, with body weight at birth of 33.3 ± 3.7 kg, were housed in individual sand bedded pens, blocked by genetic composition, and randomly assigned to 1 of 2 treatments in a randomized complete block design: Control (CON, n = 8) and blend of essential oils supplementation (BEO, n = 8, 1 g/day/calf, Apex Calf, Adisseo, China). The commercial blend was composed by plant extracts derived from anise, cinnamon, garlic, rosemary, and thyme. Animals were fed 5 L of MR/day reconstituted at 15% (dry matter basis), divided into two equal meals. Water and starter were provided ad libitum. ß-hydroxybutyrate, urea, and glucose were evaluated weekly, IGF-1 was evaluated biweekly, and total blood cell count was performed every four weeks until the end of the trial at eight weeks of age. Feed samples were collected three times a week and polled for weekly analysis. Apparent total nutrient digestibility was determined from d 56 to 60 of age. On d 60 ± 1, animals were euthanized for organ weight, histology, spleen cell proliferation, and intestinal gene expression analysis. Data were analyzed independently using linear mixed models using the REML method in the nlme package in R for continuous outcomes. A non-parametric test was used for ordered categorical outcomes using the Artools package in R. There were no differences between groups for blood evaluations, digestibility, gene expression, and a spleen cell proliferation assay. However, BEO calves presented a heavier pancreas, heavier intestines, bigger ileum villi, and higher cecum butyrate levels (P < 0.05), demonstrating that the EO supplementation helped intestinal development and symbiotic bacteria. It was also observed in CON animals' heavier respiratory tract and a higher eosinophil count (P < 0.05). Therefore, the organs where eosinophils are more active had a better response for BEO animals. No differences were found in the intestinal gene expression in the immune context. These results demonstrate that supplementing essential oils in MR could contribute to gut development and immune function. However, more research is needed to understand its impact on body development and define the best dosage and route of administration.

References

  1. FEMS Microbiol Ecol. 2020 Feb 1;96(2): [PMID: 31917419]
  2. Antibiotics (Basel). 2021 Jul 26;10(8): [PMID: 34438960]
  3. Physiol Rev. 1990 Apr;70(2):567-90 [PMID: 2181501]
  4. Nat Rev Immunol. 2005 Aug;5(8):606-16 [PMID: 16056254]
  5. PLoS One. 2021 Jun 4;16(6):e0252474 [PMID: 34086766]
  6. Vet Res. 2017 Apr 17;48(1):25 [PMID: 28412972]
  7. J Dairy Sci. 2017 Jul;100(7):5996-6005 [PMID: 28501408]
  8. Food Chem Toxicol. 2019 Mar;125:462-466 [PMID: 30710599]
  9. Adv Med Sci. 2020 Mar;65(1):46-64 [PMID: 31901477]
  10. Sci Rep. 2021 Jan 11;11(1):464 [PMID: 33431958]
  11. J Dairy Sci. 2020 Mar;103(3):2303-2314 [PMID: 31954586]
  12. J Dairy Sci. 2018 Oct;101(10):9229-9244 [PMID: 29935825]
  13. J Dairy Sci. 2017 Jul;100(7):5984-5995 [PMID: 28527800]
  14. J Dairy Sci. 2018 May;101(5):4235-4244 [PMID: 29477524]
  15. Sci Rep. 2020 Dec 4;10(1):21264 [PMID: 33277514]
  16. Poult Sci. 2022 Feb;101(2):101584 [PMID: 34942519]
  17. Anim Nutr. 2018 Jun;4(2):151-159 [PMID: 30140754]
  18. Molecules. 2013 May 24;18(6):6161-72 [PMID: 23708230]
  19. J Anim Physiol Anim Nutr (Berl). 2020 Mar;104(2):579-589 [PMID: 31854008]
  20. Pharmacol Res. 2010 Oct;62(4):298-307 [PMID: 20450976]
  21. Cold Spring Harb Perspect Biol. 2014 Sep 04;6(10):a016295 [PMID: 25190079]
  22. Animal. 2015 Jun;9(6):958-65 [PMID: 25690024]
  23. Front Microbiol. 2021 Jul 14;12:681014 [PMID: 34335503]
  24. Plant Mol Biol. 2012 Jan 31;: [PMID: 22290409]
  25. J Dairy Sci. 1991 Oct;74(10):3583-97 [PMID: 1660498]
  26. Vet Clin North Am Food Anim Pract. 2018 Mar;34(1):1-18 [PMID: 29421027]
  27. Molecules. 2018 Jul 14;23(7): [PMID: 30011894]
  28. Curr Gastroenterol Rep. 2007 Oct;9(5):385-92 [PMID: 17991339]
  29. J Dairy Sci. 2015 Nov;98(11):8044-53 [PMID: 26342981]
  30. J Dairy Sci. 2016 Oct;99(10):8018-8027 [PMID: 27474984]
  31. Reprod Nutr Dev. 1999 Jan-Feb;39(1):5-26 [PMID: 10222497]
  32. Vet Clin North Am Food Anim Pract. 2008 Mar;24(1):139-53 [PMID: 18299036]
  33. Oxid Med Cell Longev. 2018 Dec 23;2018:6468593 [PMID: 30671173]
  34. Vet Clin North Am Food Anim Pract. 2008 Mar;24(1):87-104 [PMID: 18299033]
  35. J Dairy Sci. 2019 Apr;102(4):3674-3683 [PMID: 30772024]
  36. PLoS One. 2019 Dec 10;14(12):e0216853 [PMID: 31821320]
  37. J Pathol Bacteriol. 1967 Apr;93(2):499-529 [PMID: 4861400]
  38. J Dairy Sci. 2020 Mar;103(3):2315-2323 [PMID: 31980222]
  39. Anim Nutr. 2021 Sep;7(3):883-895 [PMID: 34632119]
  40. J Anim Sci. 2020 Jul 1;98(7): [PMID: 32632450]
  41. J Anim Sci Biotechnol. 2020 Nov 9;11(1):105 [PMID: 33292513]
  42. Evid Based Complement Alternat Med. 2019 Nov 26;2019:8957245 [PMID: 31885670]
  43. Clin Chem. 1962 Apr;8:130-2 [PMID: 13878063]
  44. Cell. 2012 Jun 22;149(7):1578-93 [PMID: 22726443]
  45. Vet Clin North Am Food Anim Pract. 2019 Nov;35(3):431-451 [PMID: 31590896]
  46. Molecules. 2010 Dec 15;15(12):9252-87 [PMID: 21160452]
  47. J Dairy Sci. 2020 May;103(5):4262-4274 [PMID: 32171510]
  48. Sci Rep. 2019 Jul 23;9(1):10639 [PMID: 31337846]
  49. J Dairy Sci. 2022 Aug;105(8):6639-6653 [PMID: 35787321]
  50. Proc Natl Acad Sci U S A. 2015 May 5;112(18):5649-54 [PMID: 25792457]
  51. J Dairy Sci. 2007 Jun;90(6):2580-95 [PMID: 17517698]
  52. Allergol Int. 2021 Jan;70(1):9-18 [PMID: 33243693]
  53. J Anim Sci. 2017 Aug;95(8):3772-3782 [PMID: 28805907]
  54. PLoS One. 2014 Mar 28;9(3):e92592 [PMID: 24682221]
  55. J Dairy Sci. 2013 Feb;96(2):1189-202 [PMID: 23245964]
  56. Animals (Basel). 2021 Jul 28;11(8): [PMID: 34438679]
  57. PLoS One. 2021 Mar 11;16(3):e0231068 [PMID: 33705410]
  58. Animals (Basel). 2020 Mar 06;10(3): [PMID: 32155791]

MeSH Term

Animals
Cattle
Male
Antioxidants
Garlic
Gene Expression
Insulin-Like Growth Factor I
Spleen
Plant Oils

Chemicals

Antioxidants
Insulin-Like Growth Factor I
Plant Oils

Word Cloud

Created with Highcharts 10.0.0geneexpressiondigestibilitycellcalvesblendessentialoilsdevelopmentbloodweightspleenproliferationBEOintestinalusingheavierIGF-1organshistologybullMRdairybodyCONn = 8supplementationevaluatedweeklytotalcountweeksageanalysisdanimalsorganpackageRoutcomesdifferencesHoweverhigherP < 005immuneobjectivestudyevaluatecellsmetabolitesinsulin-likegrowthfactor-1internalpre-weanedsupplementedmilkreplacerSixteennewbornHolstein × Gyrcrossbredbirth333 ± 37 kghousedindividualsandbeddedpensblockedgeneticcompositionrandomlyassigned12treatmentsrandomizedcompleteblockdesign:Control1 g/day/calfApexCalfAdisseoChinacommercialcomposedplantextractsderivedanisecinnamongarlicrosemarythymeAnimalsfed5LMR/dayreconstituted15%drymatterbasisdividedtwoequalmealsWaterstarterprovidedadlibitumß-hydroxybutyrateureaglucosebiweeklyperformedeveryfourendtrialeightFeedsamplescollectedthreetimesweekpolledApparentnutrientdetermined566060 ± 1euthanizedDataanalyzedindependentlylinearmixedmodelsREMLmethodnlmecontinuousnon-parametrictestusedorderedcategoricalArtoolsgroupsevaluationsassaypresentedpancreasintestinesbiggerileumvillicecumbutyratelevelsdemonstratingEOhelpedsymbioticbacteriaalsoobservedanimals'respiratorytracteosinophilThereforeeosinophilsactivebetterresponsefoundcontextresultsdemonstratesupplementingcontributegutfunctionresearchneededunderstandimpactdefinebestdosagerouteadministrationPotentialbenefitsmetabolism

Similar Articles

Cited By