A caste differentiation mutant elucidates the evolution of socially parasitic ants.

Waring Trible, Vikram Chandra, Kip D Lacy, Gina Limón, Sean K McKenzie, Leonora Olivos-Cisneros, Samuel V Arsenault, Daniel J C Kronauer
Author Information
  1. Waring Trible: Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; John Harvard Distinguished Science Fellowship Program, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA. Electronic address: bucktrible@g.harvard.edu.
  2. Vikram Chandra: Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
  3. Kip D Lacy: Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  4. Gina Limón: Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA.
  5. Sean K McKenzie: Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Oxford Nanopore Technologies, Oxford OX4 4DQ, UK.
  6. Leonora Olivos-Cisneros: Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  7. Samuel V Arsenault: John Harvard Distinguished Science Fellowship Program, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
  8. Daniel J C Kronauer: Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA. Electronic address: dkronauer@rockefeller.edu.

Abstract

Most ant species have two distinct female castes-queens and workers-yet the developmental and genetic mechanisms that produce these alternative phenotypes remain poorly understood. Working with a clonal ant, we discovered a variant strain that expresses queen-like traits in individuals that would normally become workers. The variants show changes in morphology, behavior, and fitness that cause them to rely on workers in wild-type (WT) colonies for survival. Overall, they resemble the queens of many obligately parasitic ants that have evolutionarily lost the worker caste and live inside colonies of closely related hosts. The prevailing theory for the evolution of these workerless social parasites is that they evolve from reproductively isolated populations of facultative intermediates that acquire parasitic phenotypes in a stepwise fashion. However, empirical evidence for such facultative ancestors remains weak, and it is unclear how reproductive isolation could gradually arise in sympatry. In contrast, we isolated these variants just a few generations after they arose within their WT parent colony, implying that the complex phenotype reported here was induced in a single genetic step. This suggests that a single genetic module can decouple the coordinated mechanisms of caste development, allowing an obligately parasitic variant to arise directly from a free-living ancestor. Consistent with this hypothesis, the variants have lost one of the two alleles of a putative supergene that is heterozygous in WTs. These findings provide a plausible explanation for the evolution of ant social parasites and implicate new candidate molecular mechanisms for ant caste differentiation.

Keywords

References

  1. Trends Ecol Evol. 1986 Dec;1(6):155-60 [PMID: 21227804]
  2. Biotechniques. 2016 Oct 1;61(4):203-205 [PMID: 27712583]
  3. Genome Biol Evol. 2020 Jun 1;12(6):750-763 [PMID: 32315410]
  4. G3 (Bethesda). 2017 Feb 9;7(2):467-479 [PMID: 27974438]
  5. Evolution. 2021 Nov;75(11):2624-2640 [PMID: 34606622]
  6. Curr Biol. 2014 Nov 17;24(22):2728-32 [PMID: 25455032]
  7. Nature. 2015 Jul 23;523(7561):463-7 [PMID: 26176923]
  8. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  9. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  10. Genome Res. 2018 Nov;28(11):1757-1765 [PMID: 30249741]
  11. Bioessays. 2013 Aug;35(8):683-9 [PMID: 23723053]
  12. Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210196 [PMID: 35694755]
  13. Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 [PMID: 28460117]
  14. Nature. 2020 Aug;584(7822):602-607 [PMID: 32641831]
  15. Curr Biol. 2014 Mar 31;24(7):R288-94 [PMID: 24698381]
  16. Trends Ecol Evol. 2021 Aug;36(8):671-673 [PMID: 34226080]
  17. Genetics. 2017 Jun;206(2):993-1009 [PMID: 28381586]
  18. Nature. 2013 Jan 17;493(7432):402-5 [PMID: 23325221]
  19. Nat Commun. 2021 Apr 28;12(1):1935 [PMID: 33911078]
  20. Zookeys. 2021 Jan 13;1010:165-183 [PMID: 33531861]
  21. Nature. 2014 Mar 13;507(7491):229-32 [PMID: 24598547]
  22. Proc Natl Acad Sci U S A. 2021 Jun 1;118(22): [PMID: 34035172]
  23. PLoS One. 2014 Sep 22;9(9):e107334 [PMID: 25244681]
  24. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  25. Mol Ecol. 2012 Nov;21(21):5221-35 [PMID: 23013522]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13773-8 [PMID: 14610274]
  28. Trends Ecol Evol. 2021 Aug;36(8):668-670 [PMID: 33962801]
  29. Trends Ecol Evol. 2021 Feb;36(2):100-103 [PMID: 33339591]
  30. Curr Top Dev Biol. 2021;141:279-336 [PMID: 33602491]
  31. Cell. 2017 Aug 10;170(4):727-735.e10 [PMID: 28802042]
  32. Curr Biol. 2014 Sep 8;24(17):2047-52 [PMID: 25155509]
  33. Mol Biol Evol. 2017 Jan;34(1):119-130 [PMID: 28007973]
  34. PLoS Biol. 2011 Sep;9(9):e1001160 [PMID: 21980261]
  35. Genome Biol. 2016 Feb 27;17:25 [PMID: 26921238]
  36. Evolution. 1998 Aug;52(4):935-949 [PMID: 28565213]
  37. Adv Exp Med Biol. 2014;781:107-25 [PMID: 24277297]
  38. Bioinformatics. 2009 Aug 15;25(16):2071-3 [PMID: 19515959]
  39. Genome Res. 2004 Jul;14(7):1394-403 [PMID: 15231754]
  40. PLoS Genet. 2012;8(3):e1002486 [PMID: 22412378]
  41. Evolution. 1992 Dec;46(6):1605-1620 [PMID: 28567772]
  42. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  43. Biol Rev Camb Philos Soc. 2005 May;80(2):251-67 [PMID: 15921051]
  44. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  45. Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 [PMID: 25431634]
  46. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9 [PMID: 7881515]
  47. Biol Lett. 2018 Jan;14(1): [PMID: 29343564]
  48. Nat Genet. 2016 Jan;48(1):84-8 [PMID: 26569123]
  49. Hum Genet. 2016 Apr;135(4):393-402 [PMID: 26883865]
  50. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  51. Genome Biol. 2019 Oct 28;20(1):224 [PMID: 31661016]
  52. Nature. 2013 Jan 31;493(7434):664-8 [PMID: 23334415]
  53. Arch Insect Biochem Physiol. 2012 Jul;80(2):92-108 [PMID: 22550027]
  54. Biol Lett. 2020 Jun;16(6):20200105 [PMID: 32544382]
  55. Trends Ecol Evol. 2010 May;25(5):275-82 [PMID: 20106547]
  56. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14232-7 [PMID: 9826683]
  57. J Exp Biol. 2017 Jan 1;220(Pt 1):53-62 [PMID: 28057828]
  58. Insect Biochem Mol Biol. 2020 Dec;127:103490 [PMID: 33169702]
  59. Pharmaceuticals (Basel). 2021 Jan 13;14(1): [PMID: 33450833]
  60. Biol Pharm Bull. 2012;35(6):838-43 [PMID: 22687472]

Grants

  1. /Howard Hughes Medical Institute
  2. DP5 OD029792/NIH HHS
  3. R35 GM127007/NIGMS NIH HHS

MeSH Term

Animals
Female
Ants
Parasites
Social Behavior
Phenotype

Word Cloud

Created with Highcharts 10.0.0antcasteevolutionparasiticgeneticmechanismsvariantsantssocialtwodevelopmentalphenotypesclonalvariantworkersWTcoloniesobligatelylostparasitesisolatedfacultativearisesingledevelopmentdifferentiationspeciesdistinctfemalecastes-queensworkers-yetproducealternativeremainpoorlyunderstoodWorkingdiscoveredstrainexpressesqueen-liketraitsindividualsnormallybecomeshowchangesmorphologybehaviorfitnesscauserelywild-typesurvivalOverallresemblequeensmanyevolutionarilyworkerliveinsidecloselyrelatedhostsprevailingtheoryworkerlessevolvereproductivelypopulationsintermediatesacquirestepwisefashionHoweverempiricalevidenceancestorsremainsweakunclearreproductiveisolationgraduallysympatrycontrastjustgenerationsarosewithinparentcolonyimplyingcomplexphenotypereportedinducedstepsuggestsmodulecandecouplecoordinatedallowingdirectlyfree-livingancestorConsistenthypothesisoneallelesputativesupergeneheterozygousWTsfindingsprovideplausibleexplanationimplicatenewcandidatemolecularmutantelucidatessociallyFormicidaeOoceraeabiroiraiderplasticityparasitism

Similar Articles

Cited By