Abiotic factors and endophytes co-regulate flavone and terpenoid glycoside metabolism in Glycyrrhiza uralensis.

Zidi Liu, Yunyang Ma, Xuelian Lv, Nannan Li, Xiaohan Li, Jianmin Xing, Chun Li, Bing Hu
Author Information
  1. Zidi Liu: Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China.
  2. Yunyang Ma: Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China.
  3. Xuelian Lv: Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, People's Republic of China.
  4. Nannan Li: Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China.
  5. Xiaohan Li: Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China.
  6. Jianmin Xing: CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
  7. Chun Li: Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China. lichun@mail.tsinghua.edu.cn.
  8. Bing Hu: Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China. binghu319@bit.edu.cn. ORCID

Abstract

Recently, endorhizospheric microbiota is realized to be able to promote the secondary metabolism in medicinal plants, but the detailed metabolic regulation metabolisms and whether the promotion is influenced by environmental factors are unclear yet. Here, the major flavonoids and endophytic bacterial communities in various Glycyrrhiza uralensis Fisch. roots collected from seven distinct places in northwest China, as well as the edaphic conditions, were characterized and analyzed. It was found that the soil moisture and temperature might modulate the secondary metabolism in G. uralensis roots partially through some endophytes. One rationally isolated endophyte Rhizobium rhizolycopersici GUH21 was proved to promote the accumulation of isoliquiritin and glycyrrhizic acid significantly in roots of the potted G. uralensis under the relatively high-level watering and low temperature. Furthermore, we did the comparative transcriptome analysis of G. uralensis seedling roots in different treatments to investigate the detailed mechanisms of the environment-endophyte-plant interactions and found that the low temperature went hand in hand with the high-level watering to activate the aglycone biosynthesis in G. uralensis, while GUH21 and the high-level watering cooperatively promoted the in planta glucosyl unit production. Our study is of significance for the development of methods to rationally promote the medicinal plant quality. KEY POINTS: • Soil temperature and moisture related to isoliquiritin contents in Glycyrrhiza uralensis Fisch. • Soil temperature and moisture related to the hosts' endophytic bacterial community structures. • The causal relation among abiotic factors-endophytes-host was proved through the pot experiment.

Keywords

References

  1. Plant Physiol. 2022 Feb 4;188(2):1312-1334 [PMID: 34791491]
  2. Hortic Res. 2019 Jan 1;6:13 [PMID: 30622723]
  3. Appl Microbiol Biotechnol. 2021 Oct;105(19):7201-7213 [PMID: 34519854]
  4. BMC Plant Biol. 2021 Feb 2;21(1):72 [PMID: 33530947]
  5. BMC Plant Biol. 2021 Oct 27;21(1):495 [PMID: 34706650]
  6. J Integr Plant Biol. 2021 Dec;63(12):2093-2109 [PMID: 34655272]
  7. Phytochemistry. 1997 Mar;44(6):991-5 [PMID: 9055445]
  8. Appl Microbiol Biotechnol. 2015 Apr;99(7):2955-65 [PMID: 25750045]
  9. Nature. 2010 Apr 8;464(7290):913-6 [PMID: 20220754]
  10. Front Plant Sci. 2021 Oct 07;12:727882 [PMID: 34691107]
  11. Plant Physiol. 2020 Mar;182(3):1272-1283 [PMID: 31871072]
  12. Gene. 2013 Jan 15;513(1):174-83 [PMID: 23111158]
  13. Plant Sci. 2014 Dec;229:193-207 [PMID: 25443846]
  14. New Phytol. 2021 May;230(3):1078-1094 [PMID: 33469907]
  15. Cell Host Microbe. 2019 Aug 14;26(2):183-192 [PMID: 31415751]
  16. Sci Rep. 2018 Apr 3;8(1):5450 [PMID: 29615668]
  17. Plants (Basel). 2021 Oct 08;10(10): [PMID: 34685945]
  18. J Ethnopharmacol. 2020 Mar 1;249:112439 [PMID: 31811935]
  19. Evid Based Complement Alternat Med. 2015;2015:218901 [PMID: 26074987]
  20. J Cannabis Res. 2021 Jul 3;3(1):25 [PMID: 34217364]
  21. Front Plant Sci. 2017 Jun 07;8:931 [PMID: 28638391]
  22. Gene. 2022 Jan 30;809:146013 [PMID: 34655718]
  23. Biol Pharm Bull. 2015;38(1):75-81 [PMID: 25744461]
  24. Plant Physiol Biochem. 2020 Mar;148:80-89 [PMID: 31951944]
  25. Front Genet. 2020 Jul 03;11:708 [PMID: 32719720]
  26. PLoS One. 2020 Nov 19;15(11):e0242139 [PMID: 33211731]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. 3 Biotech. 2021 Sep;11(9):399 [PMID: 34422540]
  29. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  30. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  31. Plant Biotechnol J. 2022 Jan;20(1):183-200 [PMID: 34510677]
  32. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  33. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  34. Pest Manag Sci. 2019 Sep;75(9):2378-2384 [PMID: 30973666]
  35. Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6496-501 [PMID: 27217575]
  36. Food Funct. 2017 Mar 22;8(3):1235-1244 [PMID: 28229156]
  37. Plant Cell. 2020 Jan;32(1):15-41 [PMID: 31649123]
  38. J Food Sci Technol. 2020 Apr;57(4):1553-1564 [PMID: 32180652]
  39. Trends Plant Sci. 2018 Jan;23(1):25-41 [PMID: 29050989]
  40. Plant Cell. 2015 Jun;27(6):1681-96 [PMID: 26002868]
  41. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  42. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  43. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  44. Appl Microbiol Biotechnol. 2018 Sep;102(17):7309-7317 [PMID: 29971477]
  45. Appl Microbiol Biotechnol. 2021 Jun;105(11):4501-4513 [PMID: 34047817]
  46. J Pharm Biomed Anal. 2018 Nov 30;161:464-473 [PMID: 30218948]
  47. Plant Cell. 2011 Nov;23(11):3944-60 [PMID: 22108404]
  48. Cell. 1993 Sep 24;74(6):951-4 [PMID: 8402884]
  49. Plant Biotechnol J. 2010 Dec;8(9):979-93 [PMID: 20444210]
  50. Physiol Plant. 2021 Jul;172(3):1673-1687 [PMID: 33619745]
  51. Trends Ecol Evol. 2018 Feb;33(2):129-142 [PMID: 29241940]
  52. BMC Genet. 2010 Apr 29;11:29 [PMID: 20429879]
  53. PLoS One. 2015 Dec 04;10(12):e0144356 [PMID: 26636322]
  54. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5213-E5222 [PMID: 29686086]
  55. Physiol Plant. 2012 Jul;145(3):450-60 [PMID: 22339648]
  56. Sci Rep. 2016 Apr 21;6:24755 [PMID: 27098918]
  57. Plants (Basel). 2019 Dec 19;9(1): [PMID: 31861523]
  58. Trends Biotechnol. 2005 Apr;23(4):180-5 [PMID: 15780709]
  59. Plants (Basel). 2021 Nov 10;10(11): [PMID: 34834791]
  60. BMC Microbiol. 2020 Sep 21;20(1):291 [PMID: 32957914]
  61. Plant Sci. 2018 Jan;266:27-36 [PMID: 29241564]
  62. 3 Biotech. 2018 Jul;8(7):315 [PMID: 30023147]
  63. Plant Physiol. 2019 Oct;181(2):595-608 [PMID: 31377726]
  64. J Integr Plant Biol. 2020 Aug;62(8):1176-1192 [PMID: 31729146]
  65. Int J Mol Sci. 2011;12(6):3770-85 [PMID: 21747705]
  66. J Exp Bot. 2002 Aug;53(375):1735-45 [PMID: 12147723]
  67. FEMS Microbiol Lett. 1993 Feb 15;107(1):115-20 [PMID: 7682191]
  68. Ind Crops Prod. 2020 Dec 15;158:112985 [PMID: 33162677]
  69. Plant Sci. 2020 Sep;298:110573 [PMID: 32771174]
  70. Mycorrhiza. 2018 Apr;28(3):285-300 [PMID: 29455337]
  71. Metab Eng. 2019 Sep;55:33-43 [PMID: 31091467]

Grants

  1. 2020YFA0908300/National Key Research and Development Program of China
  2. No. 22178024/National Natural Science Foundation of China
  3. No. 2020KF-05/Open Funding Project of the State Key Laboratory of Biochemical Engineering

MeSH Term

Glycyrrhiza uralensis
Endophytes
Terpenes
Glycosides
Flavones
Plants, Medicinal
Plant Roots

Chemicals

neoisoliquiritin
Terpenes
Glycosides
Flavones

Word Cloud

Created with Highcharts 10.0.0uralensistemperatureGlycyrrhizarootsGpromotemetabolismFischmoistureendophyteshigh-levelwateringsecondarymedicinaldetailedfactorsendophyticbacterialfoundrationallyGUH21provedisoliquiritinlowhandSoilrelatedRecentlyendorhizosphericmicrobiotarealizedableplantsmetabolicregulationmetabolismswhetherpromotioninfluencedenvironmentalunclearyetmajorflavonoidscommunitiesvariouscollectedsevendistinctplacesnorthwestChinawelledaphicconditionscharacterizedanalyzedsoilmightmodulatepartiallyOneisolatedendophyteRhizobiumrhizolycopersiciaccumulationglycyrrhizicacidsignificantlypottedrelativelyFurthermorecomparativetranscriptomeanalysisseedlingdifferenttreatmentsinvestigatemechanismsenvironment-endophyte-plantinteractionswentactivateaglyconebiosynthesiscooperativelypromotedplantaglucosylunitproductionstudysignificancedevelopmentmethodsplantqualityKEYPOINTS:contentshosts'communitystructurescausalrelationamongabioticfactors-endophytes-hostpotexperimentAbioticco-regulateflavoneterpenoidglycoside16SrDNARoot-associatedSecondarymetabolitesynthesisTranscriptomics

Similar Articles

Cited By