Persisting yeast species and elicit unique airway inflammation in mice following repeated exposure.

Rachael E Rush, Catherine B Blackwood, Angela R Lemons, Karen C Dannemiller, Brett J Green, Tara L Croston
Author Information
  1. Rachael E Rush: Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States.
  2. Catherine B Blackwood: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States.
  3. Angela R Lemons: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States.
  4. Karen C Dannemiller: Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
  5. Brett J Green: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States.
  6. Tara L Croston: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States.

Abstract

Background: Allergic airway disease (AAD) is a growing concern in industrialized nations and can be influenced by fungal exposures. Basidiomycota yeast species such as are known to exacerbate allergic airway disease; however, recent indoor assessments have identified other Basidiomycota yeasts, including (syn. ), to be prevalent and potentially associated with asthma. Until now, the murine pulmonary immune response to repeated exposure was previously unexplored.
Objective: This study aimed to compare the immunological impact of repeated pulmonary exposure to yeasts.
Methods: Mice were repeatedly exposed to an immunogenic dose of or oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and lungs were collected to examine airway remodeling, inflammation, mucous production, cellular influx, and cytokine responses at 1 day and 21 days post final exposure. The responses to and were analyzed and compared.
Results: Following repeated exposure, both and cells were still detectable in the lungs 21 days post final exposure. Repeated exposure initiated myeloid and lymphoid cellular infiltration into the lung that worsened over time, as well as an IL-4 and IL-5 response compared to PBS-exposed controls. In contrast, repeated exposure induced a strong CD4 T cell-driven lymphoid response that started to resolve by 21 days post final exposure.
Discussion: remained in the lungs and exacerbated the pulmonary immune responses as expected following repeated exposure. The persistence of in the lung and strong lymphoid response following repeated exposure were unexpected given its lack of reported involvement in AAD. Given the abundance in indoor environments and industrial utilization of , these results highlight the importance to investigate the impact of frequently detected fungal organisms on the pulmonary response following inhalational exposure. Moreover, it is important to continue to address the knowledge gap involving Basidiomycota yeasts and their impact on AAD.

Keywords

References

  1. Clin Microbiol Infect. 2014 Jun;20 Suppl 6:36-41 [PMID: 24661790]
  2. J Fungi (Basel). 2018 Mar 07;4(1): [PMID: 29518906]
  3. J Med Microbiol. 2012 Mar;61(Pt 3):384-388 [PMID: 22074850]
  4. J Immunol. 2015 Jun 15;194(12):5999-6010 [PMID: 25972480]
  5. Immune Netw. 2018 Aug 13;18(4):e27 [PMID: 30181915]
  6. Fungal Genet Biol. 2015 May;78:1-6 [PMID: 25983191]
  7. Lancet. 2008 Sep 20;372(9643):1107-19 [PMID: 18805339]
  8. Int Rev Cell Mol Biol. 2019;348:1-68 [PMID: 31810551]
  9. ACS Nano. 2017 Jan 24;11(1):291-303 [PMID: 28045493]
  10. Indoor Air. 2014 Jun;24(3):236-47 [PMID: 24883433]
  11. Pediatr Allergy Immunol. 1995 Nov;6(4):181-6 [PMID: 8822389]
  12. FEMS Microbiol Ecol. 2012 Nov;82(2):523-39 [PMID: 22861821]
  13. Eur J Immunol. 2018 May;48(5):757-770 [PMID: 29313961]
  14. Microorganisms. 2019 Oct 12;7(10): [PMID: 31614720]
  15. Clin Exp Allergy. 2015 Jan;45(1):154-63 [PMID: 25200568]
  16. Exp Ther Med. 2017 Dec;14(6):5243-5250 [PMID: 29285049]
  17. Infect Immun. 2000 Feb;68(2):832-8 [PMID: 10639453]
  18. J Expo Sci Environ Epidemiol. 2022 Jan;32(1):48-59 [PMID: 34091598]
  19. Clin Chest Med. 2000 Jun;21(2):301-13 [PMID: 10907590]
  20. Eur Respir J. 2008 Jan;31(1):143-78 [PMID: 18166595]
  21. Syst Appl Microbiol. 1999 Feb;22(1):97-105 [PMID: 10188283]
  22. J Allergy Clin Immunol. 2006 Dec;118(6):1271-8 [PMID: 17157656]
  23. J Allergy Clin Immunol Pract. 2016 May-Jun;4(3):375-385.e1 [PMID: 26725152]
  24. N Engl J Med. 2006 Nov 23;355(21):2226-35 [PMID: 17124020]
  25. Infect Immun. 2006 Jul;74(7):3817-24 [PMID: 16790753]
  26. J Allergy Clin Immunol. 2017 Dec;140(6):1523-1540 [PMID: 28442213]
  27. FEMS Microbiol Rev. 2012 Jan;36(1):78-94 [PMID: 21658085]
  28. Transl Res. 2018 Jan;191:1-14 [PMID: 29066321]
  29. Cytokine. 2015 Sep;75(1):68-78 [PMID: 26070934]
  30. Curr Allergy Asthma Rep. 2018 Sep 27;18(11):62 [PMID: 30259186]
  31. Ann Allergy Asthma Immunol. 2018 Aug;121(2):200-210.e2 [PMID: 29660515]
  32. J Pathol. 2013 Jan;229(2):145-56 [PMID: 23097158]
  33. J Infect Dis. 2006 Apr 15;193(8):1178-86 [PMID: 16544260]
  34. Med Mycol. 2009;47(5):445-56 [PMID: 19384753]
  35. Clin Exp Allergy. 2005 Nov;35(11):1496-503 [PMID: 16297148]
  36. PLoS One. 2014 Oct 23;9(10):e109855 [PMID: 25340353]
  37. PLoS One. 2013 Nov 01;8(11):e78866 [PMID: 24223861]
  38. J Allergy Clin Immunol. 2016 Jul;138(1):76-83.e1 [PMID: 26851966]
  39. J Allergy Clin Immunol Pract. 2014 Nov-Dec;2(6):645-8; quiz 649 [PMID: 25439351]
  40. Int Arch Allergy Immunol. 2007;142(4):265-73 [PMID: 17124428]
  41. J Fungi (Basel). 2018 Mar 15;4(1): [PMID: 29543719]
  42. Microbiol Spectr. 2022 Dec 21;10(6):e0286622 [PMID: 36287085]
  43. Rev Infect Dis. 1991 Nov-Dec;13(6):1163-9 [PMID: 1775849]
  44. Semin Immunopathol. 2020 Feb;42(1):61-74 [PMID: 31989228]
  45. Infect Immun. 1995 May;63(5):1637-44 [PMID: 7729867]
  46. Allergy. 2000 May;55(5):501-4 [PMID: 10843433]
  47. BMC Infect Dis. 2017 Dec 13;17(1):768 [PMID: 29237413]
  48. PLoS One. 2015 May 29;10(5):e0128022 [PMID: 26024222]
  49. Front Immunol. 2020 Sep 15;11:581750 [PMID: 33042164]
  50. J Asthma. 1999 May;36(3):239-51 [PMID: 10350220]
  51. Int J Mol Sci. 2021 Oct 31;22(21): [PMID: 34769255]
  52. Appl Environ Microbiol. 2008 Jan;74(1):233-44 [PMID: 17981947]
  53. Am J Respir Cell Mol Biol. 2020 May;62(5):563-576 [PMID: 31671270]
  54. Lancet. 2018 Feb 24;391(10122):783-800 [PMID: 29273246]
  55. Environ Health Perspect. 2008 Jan;116(1):45-50 [PMID: 18197298]
  56. Front Microbiol. 2015 Jan 05;5:732 [PMID: 25601857]
  57. Immunol Rev. 2009 Jul;230(1):38-50 [PMID: 19594628]
  58. Clin Transl Allergy. 2014 Apr 15;4:14 [PMID: 24735832]
  59. Am J Med Technol. 1961 Mar-Apr;27:125-8 [PMID: 13780097]
  60. Respir Med. 2004 Oct;98 Suppl B:S4-8 [PMID: 15481282]
  61. FEMS Immunol Med Microbiol. 2008 Apr;52(3):417-27 [PMID: 18336384]
  62. Front Immunol. 2019 Mar 04;10:364 [PMID: 30886621]
  63. Expert Rev Respir Med. 2021 Nov;15(11):1377-1386 [PMID: 34570678]
  64. Ann Am Thorac Soc. 2016 Mar;13 Suppl 1:S25-30 [PMID: 27027948]
  65. Respir Res. 2001;2(3):150-6 [PMID: 11686879]
  66. Eur J Immunol. 2016 Apr;46(4):817-28 [PMID: 26970440]
  67. J Cytol. 2019 Jul-Sep;36(3):184 [PMID: 31359921]
  68. Front Immunol. 2017 Jul 07;8:791 [PMID: 28736555]

MeSH Term

Animals
Mice
Cryptococcus neoformans
Phylogeny
Basidiomycota
Cryptococcosis
Hypersensitivity

Word Cloud

Created with Highcharts 10.0.0exposurerepeatedresponseairwaypulmonaryfollowingdiseaseAADBasidiomycotayeastsimpactlungsinflammationresponses21dayspostfinallymphoidfungalyeastallergicindoorimmunecellularcomparedlungstrongBackground:AllergicgrowingconcernindustrializednationscaninfluencedexposuresspeciesknownexacerbatehoweverrecentassessmentsidentifiedincludingsynprevalentpotentiallyassociatedasthmanowmurinepreviouslyunexploredObjective:studyaimedcompareimmunologicalMethods:MicerepeatedlyexposedimmunogenicdoseoropharyngealaspirationBronchoalveolarlavagefluidBALFcollectedexamineremodelingmucousproductioninfluxcytokine1dayanalyzedResults:FollowingcellsstilldetectableRepeatedinitiatedmyeloidinfiltrationworsenedtimewellIL-4IL-5PBS-exposedcontrolscontrastinducedCD4Tcell-drivenstartedresolveDiscussion:remainedexacerbatedexpectedpersistenceunexpectedgivenlackreportedinvolvementGivenabundanceenvironmentsindustrialutilizationresultshighlightimportanceinvestigatefrequentlydetectedorganismsinhalationalMoreoverimportantcontinueaddressknowledgegapinvolvingPersistingyeast specieselicituniquemiceCryptococcusneoformansVishniacozymavictoriaefungi

Similar Articles

Cited By