SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics.

Jiaqiang Zhu, Lulu Shang, Xiang Zhou
Author Information
  1. Jiaqiang Zhu: Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
  2. Lulu Shang: Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
  3. Xiang Zhou: Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA. xzhousph@umich.edu. ORCID

Abstract

Spatially resolved transcriptomics (SRT)-specific computational methods are often developed, tested, validated, and evaluated in silico using simulated data. Unfortunately, existing simulated SRT data are often poorly documented, hard to reproduce, or unrealistic. Single-cell simulators are not directly applicable for SRT simulation as they cannot incorporate spatial information. We present SRTsim, an SRT-specific simulator for scalable, reproducible, and realistic SRT simulations. SRTsim not only maintains various expression characteristics of SRT data but also preserves spatial patterns. We illustrate the benefits of SRTsim in benchmarking methods for spatial clustering, spatial expression pattern detection, and cell-cell communication identification.

References

  1. Nat Biotechnol. 2021 Nov;39(11):1375-1384 [PMID: 34083791]
  2. Bioinformatics. 2019 Feb 1;35(3):487-496 [PMID: 30020412]
  3. Genome Biol. 2022 Apr 14;23(1):97 [PMID: 35422018]
  4. Nat Methods. 2020 Aug;17(8):799-806 [PMID: 32661426]
  5. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33480403]
  6. Nat Biotechnol. 2022 Dec;40(12):1794-1806 [PMID: 36203011]
  7. Cell. 2020 Dec 10;183(6):1665-1681.e18 [PMID: 33188776]
  8. Cell. 2019 Dec 12;179(7):1647-1660.e19 [PMID: 31835037]
  9. Nucleic Acids Res. 2021 May 21;49(9):e50 [PMID: 33544846]
  10. Genome Biol. 2017 Sep 12;18(1):174 [PMID: 28899397]
  11. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  12. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  13. Science. 2019 Mar 29;363(6434):1463-1467 [PMID: 30923225]
  14. Commun Biol. 2020 Oct 9;3(1):565 [PMID: 33037292]
  15. Nat Commun. 2019 Jun 13;10(1):2611 [PMID: 31197158]
  16. Nat Methods. 2022 May;19(5):534-546 [PMID: 35273392]
  17. Bioinformatics. 2021 May 17;37(7):968-975 [PMID: 32886099]
  18. Nat Biotechnol. 2022 Sep;40(9):1349-1359 [PMID: 35501392]
  19. Nat Biotechnol. 2019 May;37(5):547-554 [PMID: 30936559]
  20. Nat Methods. 2014 Apr;11(4):360-1 [PMID: 24681720]
  21. Nature. 2022 Jan;601(7891):85-91 [PMID: 34912115]
  22. Genome Biol. 2020 Aug 6;21(1):196 [PMID: 32762710]
  23. Nat Methods. 2020 Feb;17(2):193-200 [PMID: 31988518]
  24. Cell. 2020 Aug 20;182(4):976-991.e19 [PMID: 32702314]
  25. Nucleic Acids Res. 2017 Jun 20;45(11):e106 [PMID: 28369632]
  26. Genome Biol. 2023 Mar 3;24(1):39 [PMID: 36869394]
  27. Science. 2018 Jul 27;361(6400): [PMID: 29930089]
  28. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  29. Am J Pathol. 2021 Dec;191(12):2064-2071 [PMID: 34506752]
  30. Nat Methods. 2020 Jul;17(7):689-693 [PMID: 32541852]
  31. Cell Rep. 2019 Oct 1;29(1):202-211.e6 [PMID: 31577949]
  32. Genome Biol. 2022 May 18;23(1):118 [PMID: 35585605]
  33. Nat Biotechnol. 2018 Oct 29;: [PMID: 30371680]
  34. Cell. 2020 Jul 23;182(2):497-514.e22 [PMID: 32579974]
  35. Nat Biotechnol. 2022 May;40(5):661-671 [PMID: 35027729]
  36. Cell Syst. 2021 Feb 17;12(2):176-194.e6 [PMID: 33338399]
  37. Nat Methods. 2022 Jun;19(6):662-670 [PMID: 35577954]
  38. Nat Commun. 2022 Nov 23;13(1):7203 [PMID: 36418351]
  39. Nucleic Acids Res. 2022 Jul 8;50(12):e72 [PMID: 35349708]
  40. Nature. 2019 Dec;576(7785):132-137 [PMID: 31748748]
  41. Bioinformatics. 2021 Dec 7;37(23):4392-4398 [PMID: 34165490]
  42. Genome Biol. 2019 Sep 9;20(1):194 [PMID: 31500660]
  43. Nat Methods. 2021 Nov;18(11):1352-1362 [PMID: 34711971]
  44. Bioinformatics. 2022 Jun 13;38(12):3216-3221 [PMID: 35482476]
  45. Nat Methods. 2013 Sep;10(9):857-60 [PMID: 23852452]
  46. Comput Struct Biotechnol J. 2020 Feb 20;18:439-454 [PMID: 32153730]
  47. Genome Biol. 2020 Jan 16;21(1):12 [PMID: 31948481]
  48. Nat Methods. 2018 May;15(5):339-342 [PMID: 29553578]
  49. Genome Biol. 2021 May 25;22(1):163 [PMID: 34034771]
  50. Nat Genet. 2021 Dec;53(12):1698-1711 [PMID: 34857954]
  51. Bioinformatics. 2020 Mar 1;36(5):1468-1475 [PMID: 31598633]
  52. Nat Commun. 2018 Jan 18;9(1):284 [PMID: 29348443]
  53. Nat Biotechnol. 2021 Mar;39(3):313-319 [PMID: 33288904]
  54. Nat Neurosci. 2021 Mar;24(3):425-436 [PMID: 33558695]
  55. Nat Protoc. 2015 Mar;10(3):442-58 [PMID: 25675209]
  56. Science. 1996 Nov 8;274(5289):998-1001 [PMID: 8875945]
  57. Nat Biotechnol. 2020 Mar;38(3):333-342 [PMID: 31932730]
  58. Genome Biol. 2021 Mar 8;22(1):78 [PMID: 33685491]
  59. Sci Adv. 2021 Apr 21;7(17): [PMID: 33883145]
  60. Nat Methods. 2021 Nov;18(11):1342-1351 [PMID: 34711970]
  61. Nat Biotechnol. 2020 Feb;38(2):147-150 [PMID: 31937974]
  62. Nat Biotechnol. 2022 Aug;40(8):1190-1199 [PMID: 35314812]
  63. Nat Methods. 2014 Feb;11(2):190-6 [PMID: 24412976]
  64. Brief Funct Genomics. 2022 Sep 16;21(5):339-356 [PMID: 35822343]
  65. Nat Commun. 2022 Aug 20;13(1):4897 [PMID: 35986012]
  66. Cell Rep Med. 2022 Jan 24;3(2):100522 [PMID: 35233546]
  67. Bioinformatics. 2021 Nov 18;37(22):4129-4136 [PMID: 34146105]
  68. Nature. 2019 Apr;568(7751):235-239 [PMID: 30911168]
  69. Genome Res. 2021 Oct;31(10):1843-1855 [PMID: 34035045]
  70. Genome Biol. 2022 Aug 4;23(1):168 [PMID: 35927760]
  71. Nat Commun. 2020 Apr 29;11(1):2084 [PMID: 32350282]
  72. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499 [PMID: 31501331]
  73. Nat Biotechnol. 2022 Apr;40(4):517-526 [PMID: 33603203]
  74. Genome Biol. 2021 Jun 21;22(1):184 [PMID: 34154649]
  75. Nat Methods. 2018 May;15(5):343-346 [PMID: 29553579]
  76. Cell. 2021 Jun 24;184(13):3559-3572.e22 [PMID: 34115981]
  77. Genome Biol. 2021 May 10;22(1):145 [PMID: 33971932]
  78. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Grants

  1. R01 GM126553/NIGMS NIH HHS
  2. R01 GM144960/NIGMS NIH HHS
  3. R01 HG011883/NHGRI NIH HHS

MeSH Term

Transcriptome
Gene Expression Profiling
Cell Communication
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0SRTspatialdataSRTsimresolvedtranscriptomicsmethodsoftensimulatedsimulationsexpressionpatternSpatially-specificcomputationaldevelopedtestedvalidatedevaluatedsilicousingUnfortunatelyexistingpoorlydocumentedhardreproduceunrealisticSingle-cellsimulatorsdirectlyapplicablesimulationincorporateinformationpresentSRT-specificsimulatorscalablereproduciblerealisticmaintainsvariouscharacteristicsalsopreservespatternsillustratebenefitsbenchmarkingclusteringdetectioncell-cellcommunicationidentificationSRTsim:preservingspatially

Similar Articles

Cited By