Membrane-based continuous fermentation with cell recycling for propionic acid production from glycerol by Acidipropionibacterium acidipropionici.

Victor Hugo Cavero-Olguin, Tarek Dishisha, Rajni Hatti-Kaul
Author Information
  1. Victor Hugo Cavero-Olguin: Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, 124, 221 00, Lund, Sweden.
  2. Tarek Dishisha: Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
  3. Rajni Hatti-Kaul: Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, 124, 221 00, Lund, Sweden. Rajni.Hatti-Kaul@biotek.lu.se.

Abstract

BACKGROUND: Microbial production of propionic acid (PA) from renewable resources is limited by the slow growth of the producer bacteria and product-mediated inhibition. The present study evaluates high cell density continuous PA fermentation from glycerol (Gly) using Acidipropionibacterium acidipropionici DSM 4900 in a membrane-based cell recycling system. A ceramic tubular membrane filter of 0.22 μm pore size was used as the filtering device for cell recycling. The continuous fermentations were run sequentially at dilution rates of 0.05 and 0.025 1/h using varying glycerol concentrations and two different yeast extract concentrations.
RESULTS: PA volumetric productivity of 0.98 g/L.h with a product yield of 0.38 g/g was obtained with 51.40 g/L glycerol at a yeast extract concentration of 10 g/L. Increasing the glycerol and yeast extract concentrations to 64.50 g/L and 20 g/L, respectively, increased in PA productivity, product yield, and concentration to 1.82 g/L.h, 0.79 g/g, and 38.37 g/L, respectively. However, lowering the dilution rate to 0.025 1/h reduced the production efficiency. The cell density increased from 5.80 to 91.83 g/L throughout the operation, which lasted for a period of 5 months. A tolerant variant of A. acidipropoinici exhibiting growth at a PA concentration of 20 g/L was isolated at the end of the experiment.
CONCLUSIONS: Applying the current approach for PA fermentation can overcome several limitations for process industrialization.

Keywords

References

  1. Membranes (Basel). 2021 Jan 08;11(1): [PMID: 33435635]
  2. Bioprocess Biosyst Eng. 2011 May;34(4):419-31 [PMID: 21127908]
  3. Bioresour Technol. 2017 Sep;239:507-517 [PMID: 28550990]
  4. Eng Life Sci. 2021 Jun 07;21(6):429-437 [PMID: 34140853]
  5. Appl Biochem Biotechnol. 2008 Dec;151(2-3):333-41 [PMID: 18386184]
  6. Trends Biotechnol. 2013 Jan;31(1):20-8 [PMID: 23178075]
  7. Bioresour Technol. 2013 Dec;149:556-64 [PMID: 24103218]
  8. Biotechnol Biofuels. 2012 Mar 14;5:13 [PMID: 22413907]
  9. World J Microbiol Biotechnol. 2019 Jun 24;35(7):101 [PMID: 31236717]
  10. Biotechnol Bioeng. 1992 Aug 5;40(4):465-74 [PMID: 18601140]
  11. Bioresour Technol. 2015 Jan;176:80-7 [PMID: 25460987]
  12. AMB Express. 2015 Feb 20;5:13 [PMID: 25852990]
  13. Membranes (Basel). 2020 Oct 30;10(11): [PMID: 33143063]
  14. Biodegradation. 2002;13(3):171-90 [PMID: 12498215]
  15. Bioprocess Biosyst Eng. 2011 Aug;34(6):721-5 [PMID: 21318623]
  16. Biotechnol Bioeng. 2005 Aug 5;91(3):325-37 [PMID: 15977254]
  17. Biotechnol Adv. 1994;12(3):467-87 [PMID: 14548467]
  18. Bioresour Technol. 2013 Jun;137:116-23 [PMID: 23584412]
  19. J Biotechnol. 2012 Dec 15;164(2):202-10 [PMID: 22982366]
  20. Bioresour Technol. 2012 Aug;118:553-62 [PMID: 22728152]
  21. Biotechnol Bioeng. 1995 Mar 5;45(5):379-86 [PMID: 18623230]
  22. Biotechnol Bioeng. 2001 Feb 5;72(3):269-77 [PMID: 11135196]
  23. Bioresour Technol. 2013 May;135:504-12 [PMID: 23041117]
  24. Biotechnol Bioeng. 1993 Nov 5;42(9):1091-8 [PMID: 18613238]
  25. Bioresour Technol. 2002 Mar;82(1):51-9 [PMID: 11848378]
  26. Bioprocess Biosyst Eng. 2012 Jun;35(5):715-20 [PMID: 22080938]
  27. Appl Microbiol Biotechnol. 2000 Apr;53(4):435-40 [PMID: 10803900]
  28. Biotechnol Lett. 2017 May;39(5):635-645 [PMID: 28150076]
  29. Food Technol Biotechnol. 2020 Jun;58(2):115-127 [PMID: 32831564]
  30. Membranes (Basel). 2017 May 03;7(2): [PMID: 28467384]
  31. Crit Rev Biotechnol. 2012 Dec;32(4):374-81 [PMID: 22299651]
  32. Membranes (Basel). 2019 Aug 10;9(8): [PMID: 31405178]
  33. Bioresour Technol. 2018 Feb;249:777-782 [PMID: 29136932]
  34. Appl Microbiol Biotechnol. 2001 Sep;56(5-6):676-80 [PMID: 11601613]
  35. J Anim Sci. 2022 Mar 1;100(3): [PMID: 35230425]
  36. Int J Food Microbiol. 2011 Sep 1;149(1):19-27 [PMID: 21620505]
  37. Membranes (Basel). 2018 Oct 12;8(4): [PMID: 30322044]
  38. Bioprocess Biosyst Eng. 2010 Nov;33(9):1077-85 [PMID: 20589397]
  39. Bioresour Technol. 2016 Nov;219:91-97 [PMID: 27479799]
  40. J Biosci Bioeng. 2015 Jan;119(1):65-71 [PMID: 25132509]

MeSH Term

Fermentation
Glycerol
Cell Membrane
Propionibacterium

Chemicals

propionic acid
Glycerol

Word Cloud

Created with Highcharts 10.0.00PAcellglycerolacidcontinuousfermentationrecyclingconcentrationsyeastextractconcentrationproductionpropionicgrowthdensityusingAcidipropionibacteriumacidipropionicidilution0251/hproductivityhproductyield38g/g20 g/LrespectivelyincreasedBACKGROUND:Microbialrenewableresourceslimitedslowproducerbacteriaproduct-mediatedinhibitionpresentstudyevaluateshighGlyDSM4900membrane-basedsystemceramictubularmembranefilter22 μmporesizeusedfilteringdevicefermentationsrunsequentiallyrates05varyingtwodifferentRESULTS:volumetric98 g/Lobtained5140 g/L10 g/LIncreasing6450 g/L182 g/L7937 g/LHoweverloweringratereducedthe productionefficiency5809183g/Lthroughoutoperationlastedperiodof 5 monthstolerantvariantacidipropoiniciexhibitingisolatedendexperimentCONCLUSIONS:ApplyingcurrentapproachcanovercomeseverallimitationsprocessindustrializationMembrane-basedBiorefineryFermentationGlycerolPropionibacteriaPropionic

Similar Articles

Cited By