Intrinsic Dynamics of the ClpXP Proteolytic Machine Using Elastic Network Models.

Lenin González-Paz, Carla Lossada, Maria Laura Hurtado-León, Francelys V Fernández-Materán, José Luis Paz, Shayan Parvizi, Rafael Eduardo Cardenas Castillo, Freddy Romero, Ysaias J Alvarado
Author Information
  1. Lenin González-Paz: Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela.
  2. Carla Lossada: Centro de Biomedicina Molecular (CBM). Laboratorio de Biocomputación (LB), Instituto Venezolano de Investigaciones Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela.
  3. Maria Laura Hurtado-León: Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela.
  4. Francelys V Fernández-Materán: Centro de Biomedicina Molecular (CBM). Laboratorio de Biocomputación (LB), Instituto Venezolano de Investigaciones Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela.
  5. José Luis Paz: Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, 15081 Lima, Perú.
  6. Shayan Parvizi: Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas 77030, United States. ORCID
  7. Rafael Eduardo Cardenas Castillo: Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas 77030, United States.
  8. Freddy Romero: Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas 77030, United States.
  9. Ysaias J Alvarado: Centro de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica Teórica y Experimental (LQBTE), Instituto Venezolano de Investigaciones Cientificas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela. ORCID

Abstract

ClpXP complex is an ATP-dependent mitochondrial matrix protease that binds, unfolds, translocates, and subsequently degrades specific protein substrates. Its mechanisms of operation are still being debated, and several have been proposed, including the sequential translocation of two residues (SC/2R), six residues (SC/6R), and even long-pass probabilistic models. Therefore, it has been suggested to employ biophysical-computational approaches that can determine the kinetics and thermodynamics of the translocation. In this sense, and based on the apparent inconsistency between structural and functional studies, we propose to apply biophysical approaches based on elastic network models (ENM) to study the intrinsic dynamics of the theoretically most probable hydrolysis mechanism. The proposed models ENM suggest that the ClpP region is decisive for the stabilization of the ClpXP complex, contributing to the flexibility of the residues adjacent to the pore, favoring the increase in pore size and, therefore, with the energy of interaction of its residues with a larger portion of the substrate. It is predicted that the complex may undergo a stable configurational change once assembled and that the deformability of the system once assembled is oriented, to increase the rigidity of the domains of each region (ClpP and ClpX) and to gain flexibility of the pore. Our predictions could suggest under the conditions of this study the mechanism of the interaction of the system, of which the substrate passes through the unfolding of the pore in parallel with a folding of the bottleneck. The variations in the distance calculated by molecular dynamics could allow the passage of a substrate with a size equivalent to ∼3 residues. The theoretical behavior of the pore and the stability and energy of binding to the substrate based on ENM models suggest that in this system, there are thermodynamic, structural, and configurational conditions that allow a possible translocation mechanism that is not strictly sequential.

References

  1. Rep Prog Phys. 2012 Jul;75(7):076601 [PMID: 22790780]
  2. Bioinformatics. 2021 Sep 29;37(18):3038-3040 [PMID: 33720293]
  3. EMBO J. 2002 Sep 16;21(18):4938-49 [PMID: 12234933]
  4. J Mol Biol. 1971 Feb 14;55(3):379-400 [PMID: 5551392]
  5. Acta Pharmacol Sin. 2020 Jan;41(1):138-144 [PMID: 31263275]
  6. Cell. 2004 Sep 17;118(6):743-55 [PMID: 15369673]
  7. Elife. 2020 Feb 28;9: [PMID: 32108573]
  8. Mol Divers. 2021 Aug;25(3):1963-1977 [PMID: 33856591]
  9. Biophys Chem. 2012 Feb;161:46-9 [PMID: 22133917]
  10. Biophys J. 2001 Jan;80(1):505-15 [PMID: 11159421]
  11. Bioinformatics. 2014 Jun 15;30(12):1674-80 [PMID: 24563257]
  12. Oxid Med Cell Longev. 2019 Nov 4;2019:9825061 [PMID: 31781358]
  13. Protein Sci. 2019 Apr;28(4):756-765 [PMID: 30767302]
  14. Structure. 2015 Aug 4;23(8):1516-1525 [PMID: 26165596]
  15. Cell Rep. 2016 Dec 6;17(10):2522-2531 [PMID: 27926857]
  16. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  17. Biochim Biophys Acta. 2015 May;1850(5):911-922 [PMID: 25267310]
  18. Cell. 2018 Mar 22;173(1):260-274.e25 [PMID: 29551266]
  19. Methods Mol Biol. 2019;2053:149-167 [PMID: 31452104]
  20. Proteins. 2000 Aug 15;40(3):512-24 [PMID: 10861943]
  21. Nucleic Acids Res. 2020 Jul 2;48(W1):W94-W103 [PMID: 32427333]
  22. Comput Struct Biotechnol J. 2022 Jan 07;20:640-649 [PMID: 35140884]
  23. J Biomol Struct Dyn. 2022 Feb;40(3):1299-1315 [PMID: 32969333]
  24. Biophys J. 2017 Apr 25;112(8):1561-1570 [PMID: 28445748]
  25. Nat Rev Mol Cell Biol. 2020 Jan;21(1):43-58 [PMID: 31754261]
  26. J Mol Model. 2012 Feb;18(2):755-64 [PMID: 21594693]
  27. Acc Chem Res. 2021 Mar 2;54(5):1251-1259 [PMID: 33550810]
  28. Nat Struct Mol Biol. 2012 Dec;19(12):1338-46 [PMID: 23160353]
  29. J Comput Chem. 2017 Mar 30;38(8):541-552 [PMID: 28052351]
  30. Curr Opin Struct Biol. 2022 Feb;72:1-8 [PMID: 34280872]
  31. Nat Commun. 2020 Apr 2;11(1):1643 [PMID: 32242014]
  32. Cell. 2000 Sep 1;102(5):683-94 [PMID: 11007486]
  33. J Phys Chem B. 2020 Sep 24;124(38):8221-8229 [PMID: 32841026]
  34. Nucleic Acids Res. 2016 Jul 8;44(W1):W356-60 [PMID: 27131359]
  35. Acta Crystallogr D Biol Crystallogr. 2007 Feb;63(Pt 2):249-59 [PMID: 17242518]
  36. J Biomol Struct Dyn. 2022 Mar;40(5):2010-2023 [PMID: 33084512]
  37. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W222-7 [PMID: 22553366]
  38. Proteins. 1995 Dec;23(4):557-60 [PMID: 8749851]
  39. Biophys Physicobiol. 2020 Oct 15;17:140-146 [PMID: 33240741]
  40. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W348-51 [PMID: 22645321]
  41. FEBS J. 2021 Sep;288(18):5231-5251 [PMID: 33211406]
  42. Toxins (Basel). 2020 Nov 26;12(12): [PMID: 33256167]
  43. Adv Exp Med Biol. 2014;805:353-84 [PMID: 24446369]
  44. J Biomol Struct Dyn. 2022 Mar;40(5):2217-2226 [PMID: 33111618]
  45. Inform Med Unlocked. 2021;23:100539 [PMID: 33623816]
  46. Biochim Biophys Acta. 2012 Jan;1823(1):15-28 [PMID: 21736903]
  47. Sci Adv. 2018 Oct 24;4(10):eaat8797 [PMID: 30397644]
  48. Biophys J. 2015 Jan 6;108(1):85-97 [PMID: 25564855]
  49. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):110-5 [PMID: 26699500]
  50. Inform Med Unlocked. 2021;23:100541 [PMID: 33649734]
  51. Rep Prog Phys. 2021 Dec 08;84(12): [PMID: 34753115]
  52. Biophys J. 2021 Aug 17;120(16):3437-3454 [PMID: 34181904]
  53. Sci Adv. 2022 Mar 18;8(11):eabm9294 [PMID: 35294247]
  54. Annu Rev Biophys Bioeng. 1977;6:151-76 [PMID: 326146]
  55. Cell. 2006 Feb 10;124(3):535-47 [PMID: 16469700]
  56. Proteins. 2021 Sep;89(9):1180-1192 [PMID: 33969540]
  57. Structure. 2010 Jul 14;18(7):798-808 [PMID: 20637416]
  58. J Mol Struct. 2021 Dec 15;1246:131253 [PMID: 34376872]
  59. Biochem Pharmacol. 2022 Oct;204:115232 [PMID: 36030831]
  60. J Phys Chem B. 2013 Oct 3;117(39):11556-64 [PMID: 23987570]
  61. J Biomol Struct Dyn. 2022 Feb;40(2):696-711 [PMID: 32897138]
  62. Bioinformatics. 2019 May 15;35(10):1777-1779 [PMID: 30329012]
  63. J Phys Condens Matter. 2010 Oct 27;22(42):423202 [PMID: 21403307]
  64. Bioinformatics. 2007 Oct 1;23(19):2625-7 [PMID: 17717034]
  65. Sci Adv. 2021 Sep 03;7(36):eabg4674 [PMID: 34516899]
  66. Biophys Chem. 2021 Nov;278:106677 [PMID: 34428682]
  67. Biochem Pharmacol. 2021 Oct;192:114753 [PMID: 34474040]
  68. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19819-24 [PMID: 18077414]
  69. Nucleic Acids Res. 2022 May 24;: [PMID: 35609983]
  70. J King Saud Univ Sci. 2022 Oct;34(7):102214 [PMID: 35811756]
  71. Int J Mol Sci. 2020 Apr 22;21(8): [PMID: 32331453]
  72. IEEE Trans Cybern. 2013 Jun;43(3):982-94 [PMID: 23193245]
  73. J Phys Chem B. 2019 May 30;123(21):4497-4504 [PMID: 31063375]
  74. Enzyme Microb Technol. 2021 Jun;147:109787 [PMID: 33992409]
  75. J Struct Biol. 2006 Feb;153(2):113-28 [PMID: 16406682]
  76. Proteins. 2008 Mar;70(4):1219-27 [PMID: 17847101]
  77. Nat Struct Mol Biol. 2010 Apr;17(4):471-8 [PMID: 20305655]
  78. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27218-27223 [PMID: 33067388]
  79. Chem Biol. 2010 Sep 24;17(9):959-69 [PMID: 20851345]
  80. Chem Biol. 2009 Jun 26;16(6):605-12 [PMID: 19549599]
  81. Biochem Soc Trans. 2022 Apr 29;50(2):895-906 [PMID: 35356966]
  82. Annu Rev Biophys. 2020 May 6;49:267-288 [PMID: 32075411]
  83. Nucleic Acids Res. 2018 Jul 2;46(W1):W368-W373 [PMID: 29718451]
  84. J Chem Inf Model. 2018 Nov 26;58(11):2193-2202 [PMID: 30336018]
  85. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6306-E6313 [PMID: 28724722]
  86. Chem Rev. 2016 Jul 13;116(13):7673-97 [PMID: 27186992]
  87. Bioinformatics. 2015 Mar 1;31(5):779-81 [PMID: 25355786]
  88. J Med Chem. 2006 Jun 1;49(11):3315-21 [PMID: 16722650]
  89. J Cheminform. 2013 Aug 16;5(1):39 [PMID: 23953065]
  90. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8464-9 [PMID: 24850865]
  91. J Comput Chem. 2011 Apr 30;32(6):1183-94 [PMID: 21387345]
  92. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19777-19785 [PMID: 31506355]
  93. J Biol Chem. 2004 Oct 15;279(42):43879-85 [PMID: 15297450]
  94. Cell. 2009 Nov 13;139(4):744-56 [PMID: 19914167]
  95. J Mol Liq. 2021 Oct 15;340:117284 [PMID: 34421159]
  96. J Chem Inf Model. 2011 Jul 25;51(7):1604-22 [PMID: 21639141]
  97. Molecules. 2021 Dec 29;27(1): [PMID: 35011428]
  98. J Mol Biol. 2008 Jun 13;379(4):760-71 [PMID: 18468623]
  99. Nat Commun. 2019 Jun 3;10(1):2393 [PMID: 31160557]