Development of Mechanistic Neural Mass (mNM) Models that Link Physiology to Mean-Field Dynamics.

Richa Tripathi, Bruce J Gluckman
Author Information
  1. Richa Tripathi: Center for Neural Engineering, The Pennsylvania State University, University Park, PA, United States.
  2. Bruce J Gluckman: Center for Neural Engineering, The Pennsylvania State University, University Park, PA, United States.

Abstract

Brain rhythms emerge from the mean-field activity of networks of neurons. There have been many efforts to build mathematical and computational embodiments in the form of discrete cell-group activities-termed neural masses-to understand in particular the origins of evoked potentials, intrinsic patterns of activities such as theta, regulation of sleep, Parkinson's disease related dynamics, and mimic seizure dynamics. As originally utilized, standard neural masses convert input through a sigmoidal function to a firing rate, and firing rate through a synaptic alpha function to other masses. Here we define a process to build mechanistic neural masses (mNMs) as mean-field models of microscopic membrane-type (Hodgkin Huxley type) models of different neuron types that duplicate the stability, firing rate, and associated bifurcations as function of relevant slow variables - such as extracellular potassium - and synaptic current; and whose output is both firing rate and impact on the slow variables - such as transmembrane potassium flux. Small networks composed of just excitatory and inhibitory mNMs demonstrate expected dynamical states including firing, runaway excitation and depolarization block, and these transitions change in biologically observed ways with changes in extracellular potassium and excitatory-inhibitory balance.

Keywords

References

  1. Expert Rev Neurother. 2008 Jun;8(6):889-96 [PMID: 18505354]
  2. Brain. 2019 Feb 1;142(2):412-425 [PMID: 30649209]
  3. J Comput Neurosci. 2017 Apr;42(2):203-215 [PMID: 28102460]
  4. Clin Neurophysiol. 2014 May;125(5):930-40 [PMID: 24374087]
  5. Biophys J. 1972 Jan;12(1):1-24 [PMID: 4332108]
  6. Biol Cybern. 2010 May;102(5):361-71 [PMID: 20306202]
  7. Cephalalgia. 2019 Nov;39(13):1683-1699 [PMID: 30922081]
  8. Annu Rev Biophys Bioeng. 1972;1:225-56 [PMID: 4346305]
  9. Biol Cybern. 1993;68(3):275-83 [PMID: 8452897]
  10. Neural Netw. 2017 Apr;88:65-73 [PMID: 28192762]
  11. PLoS Comput Biol. 2020 Nov 9;16(11):e1008430 [PMID: 33166277]
  12. Front Comput Neurosci. 2021 Jan 05;14:581040 [PMID: 33469424]
  13. J Neural Eng. 2018 Dec;15(6):066012 [PMID: 30211694]
  14. J Neurosci. 1996 Oct 15;16(20):6402-13 [PMID: 8815919]
  15. Sci Rep. 2017 Mar 08;7:43652 [PMID: 28272506]
  16. Seizure. 1992 Mar;1(1):37-42 [PMID: 1344319]
  17. PLoS Comput Biol. 2008 Nov;4(11):e1000219 [PMID: 19008942]
  18. J Math Neurosci. 2015 Mar 27;5:7 [PMID: 25852982]
  19. Neurology. 2012 Jun 5;78(23):1868-76 [PMID: 22539579]
  20. Nat Rev Neurosci. 2014 Jun;15(6):379-93 [PMID: 24857965]
  21. Front Comput Neurosci. 2020 May 28;14:47 [PMID: 32547379]
  22. J Neurophysiol. 2010 Apr;103(4):1937-53 [PMID: 20107121]
  23. Ann Neurol. 2007 Jun;61(6):587-98 [PMID: 17444534]
  24. J Neurophysiol. 1983 Aug;50(2):487-507 [PMID: 6136553]
  25. Biol Cybern. 1995 Sep;73(4):357-66 [PMID: 7578475]
  26. Annu Rev Physiol. 2001;63:815-46 [PMID: 11181977]
  27. Eur J Neurosci. 2002 May;15(9):1499-508 [PMID: 12028360]
  28. Chaos. 2016 Dec;26(12):123113 [PMID: 28039987]
  29. J Clin Neurophysiol. 2015 Feb;32(1):14-20 [PMID: 25647769]
  30. J Neurophysiol. 1967 Sep;30(5):1169-93 [PMID: 4293410]
  31. Epilepsy Behav. 2017 Nov;76:24-31 [PMID: 28931473]
  32. Lancet Neurol. 2013 Oct;12(10):966-77 [PMID: 24012372]
  33. J Neurosci. 2014 Aug 27;34(35):11733-43 [PMID: 25164668]
  34. PLoS Comput Biol. 2016 Sep 01;12(9):e1005022 [PMID: 27584827]
  35. Neuron. 2018 Mar 7;97(5):1004-1021 [PMID: 29518355]
  36. J Neurophysiol. 1947 Nov;10(6):409-14 [PMID: 20268874]
  37. Philos Trans A Math Phys Eng Sci. 2011 Oct 13;369(1952):3855-83 [PMID: 21893532]
  38. Seizure. 2015 May;28:12-7 [PMID: 25797888]
  39. Brain. 2019 Feb 1;142(2):231-233 [PMID: 30698758]
  40. Neuroimage. 2015 Jun;113:374-86 [PMID: 25754070]
  41. Front Comput Neurosci. 2013 Jul 04;7:81 [PMID: 23847522]
  42. J Neurophysiol. 2000 Jul;84(1):495-512 [PMID: 10899222]
  43. Epilepsia. 2017 Jan;58(1):17-26 [PMID: 27888514]
  44. J Comput Neurosci. 1994 Jun;1(1-2):39-60 [PMID: 8792224]
  45. Epilepsy Behav. 2018 Nov;88:205-211 [PMID: 30296664]
  46. Kybernetik. 1974 May 31;15(1):27-37 [PMID: 4853232]
  47. Epilepsia. 2011 Apr;52(4):657-78 [PMID: 21426333]
  48. Sci Transl Med. 2015 Apr 8;7(282):282ra46 [PMID: 25855492]
  49. J Comput Neurosci. 2016 Aug;41(1):15-28 [PMID: 27066796]
  50. Neurology. 2016 Jan 19;86(3):297-306 [PMID: 26519545]
  51. IEEE Trans Cybern. 2021 Oct;51(10):5046-5056 [PMID: 31295136]
  52. J Comput Neurosci. 2014 Aug;37(1):125-48 [PMID: 24402459]

Grants

  1. R01 EB014641/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0firingneuralratenetworksmassesfunctionmodels-potassiummean-fieldbuilddynamicssynapticmNMsslowvariablesextracellulardepolarizationblockBrainrhythmsemergeactivityneuronsmanyeffortsmathematicalcomputationalembodimentsformdiscretecell-groupactivities-termedmasses-tounderstandparticularoriginsevokedpotentialsintrinsicpatternsactivitiesthetaregulationsleepParkinson'sdiseaserelatedmimicseizureoriginallyutilizedstandardconvertinputsigmoidalalphadefineprocessmechanisticmicroscopicmembrane-typeHodgkinHuxleytypedifferentneurontypesduplicatestabilityassociatedbifurcationsrelevantcurrentwhoseoutputimpacttransmembranefluxSmallcomposedjustexcitatoryinhibitorydemonstrateexpecteddynamicalstatesincludingrunawayexcitationtransitionschangebiologicallyobservedwayschangesexcitatory-inhibitorybalanceDevelopmentMechanisticNeuralMassmNMModelsLinkPhysiologyMean-FieldDynamicsbraindynamicconnectivityexcitation-inhibitionimbalancemasspathophysiology

Similar Articles

Cited By