Rational Design of Stapled Antimicrobial Peptides to Enhance Stability and Potency against Polymicrobial Sepsis.

Jih-Chao Yeh, Prakash Kishore Hazam, Chu-Yi Hsieh, Po-Hsien Hsu, Wen-Chun Lin, Yun-Ru Chen, Chao-Chin Li, Jyh-Yih Chen
Author Information
  1. Jih-Chao Yeh: Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
  2. Prakash Kishore Hazam: Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
  3. Chu-Yi Hsieh: Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
  4. Po-Hsien Hsu: Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan.
  5. Wen-Chun Lin: Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
  6. Yun-Ru Chen: Academia Sinica Protein Clinic, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
  7. Chao-Chin Li: Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.
  8. Jyh-Yih Chen: Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan. ORCID

Abstract

In this work, we sought to develop a TP4-based stapled peptide that can be used to counter polymicrobial sepsis. First, we segregated the TP4 sequence into hydrophobic and cationic/hydrophilic zones and substituted the preferred residue, lysine, as the sole cationic amino acid. These modifications minimized the intensity of cationic or hydrophobic characteristics within small segments. Then, we incorporated single or multiple staples into the peptide chain, bracketing the cationic/hydrophilic segments to improve pharmacological suitability. Using this approach, we were able to develop an AMP with low toxicity and notable efficacy. In our studies, one dual stapled peptide out of the series of candidates (TP4-3: FIIXKKSXGLFKKKAGAXKKKXIKK) showed significant activity, low toxicity, and high stability (in 50% human serum). When tested in cecal ligation and puncture (CLP) mouse models of polymicrobial sepsis, TP4-3 improved survival (87.5% on day 7). Furthermore, TP4-3 enhanced the activity of meropenem against polymicrobial sepsis (100% survival on day 7) compared to meropenem alone (37.5% survival on day 7). Molecules such as TP4-3 may be well suited for a wide variety of clinical applications.

Keywords

References

  1. Mar Drugs. 2018 Dec 13;16(12): [PMID: 30551662]
  2. Antimicrob Agents Chemother. 2005 Nov;49(11):4561-6 [PMID: 16251296]
  3. PLoS One. 2012;7(11):e50263 [PMID: 23226256]
  4. Nat Rev Microbiol. 2009 Mar;7(3):245-50 [PMID: 19219054]
  5. Rapid Commun Mass Spectrom. 2004;18(5):588-9 [PMID: 14978805]
  6. Peptides. 2011 Jul;32(7):1469-76 [PMID: 21693141]
  7. Front Microbiol. 2022 Mar 23;13:806654 [PMID: 35444633]
  8. Fish Shellfish Immunol. 2016 Mar;50:200-9 [PMID: 26828260]
  9. Nat Biomed Eng. 2021 May;5(5):467-480 [PMID: 33390588]
  10. Biochim Biophys Acta Biomembr. 2019 Jul 1;1861(7):1329-1337 [PMID: 31095945]
  11. Antimicrob Agents Chemother. 1997 Aug;41(8):1738-42 [PMID: 9257752]
  12. Biomaterials. 2015 Aug;61:41-51 [PMID: 25996410]
  13. Biomaterials. 2013 Dec;34(38):10319-27 [PMID: 24075409]
  14. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  15. J Am Chem Soc. 2018 Jan 10;140(1):423-432 [PMID: 29206041]
  16. Microbiol Spectr. 2022 Aug 31;10(4):e0276421 [PMID: 35856709]
  17. Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11399-11403 [PMID: 28643857]
  18. Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26936-26945 [PMID: 33046640]
  19. J Am Chem Soc. 2006 Sep 20;128(37):12156-61 [PMID: 16967965]
  20. ACS Infect Dis. 2020 Sep 11;6(9):2369-2385 [PMID: 32786286]
  21. Molecules. 2017 Nov 06;22(11): [PMID: 29113147]
  22. Eur J Med Chem. 2023 Mar 5;249:115131 [PMID: 36669399]
  23. Drug Discov Today. 2015 Jan;20(1):122-8 [PMID: 25450771]
  24. PLoS One. 2017 Jan 13;12(1):e0169678 [PMID: 28085905]
  25. Nat Commun. 2018 Apr 16;9(1):1490 [PMID: 29662055]
  26. Chem Commun (Camb). 2015 May 21;51(41):8574-83 [PMID: 25797909]
  27. Microbiol Spectr. 2022 Dec 21;10(6):e0240922 [PMID: 36453944]
  28. Sci Transl Med. 2018 Jan 10;10(423): [PMID: 29321257]
  29. Curr Opin Chem Biol. 2017 Jun;38:87-96 [PMID: 28399505]
  30. Nat Biomed Eng. 2022 Jan;6(1):67-75 [PMID: 34737399]
  31. Int J Mol Sci. 2022 Feb 16;23(4): [PMID: 35216307]
  32. Front Immunol. 2021 Dec 02;12:773013 [PMID: 34925343]
  33. Sci Adv. 2020 May 01;6(18):eaay6817 [PMID: 32426473]
  34. Chem Soc Rev. 2021 Apr 7;50(7):4245-4258 [PMID: 33635302]
  35. Prog Biophys Mol Biol. 2019 Mar;142:10-22 [PMID: 30125585]
  36. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  37. J Clin Invest. 1985 Oct;76(4):1427-35 [PMID: 2997278]
  38. Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3028-3037 [PMID: 28882626]
  39. Front Microbiol. 2010 Dec 08;1:134 [PMID: 21687759]
  40. ACS Nano. 2021 Jan 26;15(1):966-978 [PMID: 33438392]
  41. Macromol Biosci. 2022 Jun;22(6):e2200043 [PMID: 35332672]
  42. Nat Biotechnol. 2019 Oct;37(10):1186-1197 [PMID: 31427820]
  43. Microbiol Spectr. 2022 Aug 31;10(4):e0097322 [PMID: 35862981]
  44. Antimicrob Agents Chemother. 2013 Mar;57(3):1480-7 [PMID: 23318793]
  45. Pharmacol Res Perspect. 2017 Oct;5(5): [PMID: 28971613]
  46. Trends Endocrinol Metab. 2022 Apr;33(4):292-304 [PMID: 35181202]
  47. Sci Rep. 2021 Jan 19;11(1):1823 [PMID: 33469079]
  48. Elife. 2021 Apr 20;10: [PMID: 33875135]
  49. Microbiol Spectr. 2022 Jun 29;10(3):e0012522 [PMID: 35658593]
  50. Microbiol Rev. 1983 Mar;47(1):46-83 [PMID: 6343827]
  51. J Vis Exp. 2014 Feb 17;(84):e51008 [PMID: 24637356]
  52. AMB Express. 2019 Jul 30;9(1):122 [PMID: 31363941]
  53. Pharmacol Rev. 2003 Mar;55(1):27-55 [PMID: 12615953]
  54. Toxicol In Vitro. 2004 Oct;18(5):703-10 [PMID: 15251189]
  55. PLoS Med. 2016 Nov 29;13(11):e1002184 [PMID: 27898664]
  56. Commun Biol. 2021 Jan 4;4(1):31 [PMID: 33398076]
  57. Nat Commun. 2020 Jun 23;11(1):3184 [PMID: 32576824]

Word Cloud

Created with Highcharts 10.0.0peptidepolymicrobialsepsisTP4-3survivalday7developstapledTP4hydrophobiccationic/hydrophiliccationicsegmentslowtoxicityactivitycecalligationpuncture5%meropenemworksoughtTP4-basedcanusedcounterFirstsegregatedsequencezonessubstitutedpreferredresiduelysinesoleaminoacidmodificationsminimizedintensitycharacteristicswithinsmallincorporatedsinglemultiplestapleschainbracketingimprovepharmacologicalsuitabilityUsingapproachableAMPnotableefficacystudiesonedualseriescandidatesTP4-3:FIIXKKSXGLFKKKAGAXKKKXIKKshowedsignificanthighstability50%humanserumtestedCLPmousemodelsimproved87Furthermoreenhanced100%comparedalone37MoleculesmaywellsuitedwidevarietyclinicalapplicationsRationalDesignStapledAntimicrobialPeptidesEnhanceStabilityPotencyPolymicrobialSepsisTilapiapiscidin4antimicrobialdesignstapling

Similar Articles

Cited By