Neuro-computational mechanisms and individual biases in action-outcome learning under moral conflict.

Laura Fornari, Kalliopi Ioumpa, Alessandra D Nostro, Nathan J Evans, Lorenzo De Angelis, Sebastian P H Speer, Riccardo Paracampo, Selene Gallo, Michael Spezio, Christian Keysers, Valeria Gazzola
Author Information
  1. Laura Fornari: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
  2. Kalliopi Ioumpa: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
  3. Alessandra D Nostro: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
  4. Nathan J Evans: School of Psychology, University of Queensland, Brisbane, QLD, Australia.
  5. Lorenzo De Angelis: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
  6. Sebastian P H Speer: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
  7. Riccardo Paracampo: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
  8. Selene Gallo: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
  9. Michael Spezio: Psychology, Neuroscience, & Data Science, Scripps College, 1030 Columbia Ave, CA 91711, Claremont, CA, USA. ORCID
  10. Christian Keysers: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands. ORCID
  11. Valeria Gazzola: Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands. v.gazzola@nin.knaw.nl. ORCID

Abstract

Learning to predict action outcomes in morally conflicting situations is essential for social decision-making but poorly understood. Here we tested which forms of Reinforcement Learning Theory capture how participants learn to choose between self-money and other-shocks, and how they adapt to changes in contingencies. We find choices were better described by a reinforcement learning model based on the current value of separately expected outcomes than by one based on the combined historical values of past outcomes. Participants track expected values of self-money and other-shocks separately, with the substantial individual difference in preference reflected in a valuation parameter balancing their relative weight. This valuation parameter also predicted choices in an independent costly helping task. The expectations of self-money and other-shocks were biased toward the favored outcome but fMRI revealed this bias to be reflected in the ventromedial prefrontal cortex while the pain-observation network represented pain prediction errors independently of individual preferences.

References

  1. Nat Neurosci. 2017 Jun;20(6):879-885 [PMID: 28459442]
  2. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17320-5 [PMID: 25404350]
  3. Trends Cogn Sci. 2012 Jan;16(1):72-80 [PMID: 22177032]
  4. J Pers Assess. 1982 Oct;46(5):522-8 [PMID: 16367635]
  5. Psychol Bull. 1995 May;117(3):363-86 [PMID: 7777644]
  6. Neuron. 2012 Sep 20;75(6):1114-21 [PMID: 22998878]
  7. Nat Rev Neurosci. 2010 Jun;11(6):417-28 [PMID: 20445542]
  8. Neuroimage. 2015 Jan 15;105:347-56 [PMID: 25462694]
  9. Curr Opin Neurobiol. 2013 Apr;23(2):229-38 [PMID: 23267662]
  10. Soc Cogn Affect Neurosci. 2019 Aug 31;14(8):789-813 [PMID: 31393982]
  11. Neuron. 2010 Oct 6;68(1):149-60 [PMID: 20920798]
  12. Soc Cogn Affect Neurosci. 2020 Jul 30;15(6):695-707 [PMID: 32608484]
  13. Neuron. 2013 Oct 16;80(2):312-25 [PMID: 24139036]
  14. Comput Psychiatr. 2017 Oct 01;1:24-57 [PMID: 29601060]
  15. Neuron. 2016 May 18;90(4):692-707 [PMID: 27196973]
  16. Dev Sci. 2017 Jul;20(4): [PMID: 27146417]
  17. Nat Rev Neurosci. 2014 Aug;15(8):549-62 [PMID: 24986556]
  18. Front Behav Neurosci. 2018 Nov 27;12:289 [PMID: 30542272]
  19. Elife. 2020 Sep 07;9: [PMID: 32894226]
  20. Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5 [PMID: 27357684]
  21. Soc Cogn Affect Neurosci. 2015 Nov;10(11):1437-48 [PMID: 25813790]
  22. J Neurosci. 2020 Sep 16;40(38):7286-7299 [PMID: 32839234]
  23. Neuroimage. 2013 Aug 1;76:412-27 [PMID: 23507394]
  24. Front Neurosci. 2012 Oct 26;6:146 [PMID: 23112758]
  25. Neuropharmacology. 1998 Apr-May;37(4-5):421-9 [PMID: 9704983]
  26. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9763-8 [PMID: 27528669]
  27. Psychol Bull. 2014 Nov;140(6):1608-47 [PMID: 25347133]
  28. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27719-27730 [PMID: 33055212]
  29. N Engl J Med. 2013 Apr 11;368(15):1388-97 [PMID: 23574118]
  30. Trends Cogn Sci. 2014 Apr;18(4):163-6 [PMID: 24484764]
  31. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14431-6 [PMID: 20660717]
  32. Neuroimage. 2011 Feb 1;54(3):2492-502 [PMID: 20946964]
  33. Neurosci Biobehav Rev. 2013 Aug;37(7):1297-310 [PMID: 23567522]
  34. Neuron. 2015 Jul 15;87(2):451-62 [PMID: 26182424]
  35. Nat Neurosci. 2008 Apr;11(4):389-97 [PMID: 18368045]
  36. Science. 2016 Mar 4;351(6277):1074-8 [PMID: 26941317]
  37. Hum Brain Mapp. 2018 Jul;39(7):2887-2906 [PMID: 29575249]
  38. Elife. 2018 May 08;7: [PMID: 29735015]
  39. Nat Neurosci. 2020 Jul;23(7):788-799 [PMID: 32601411]
  40. Annu Rev Psychol. 2011;62:23-48 [PMID: 20822437]
  41. Cogn Affect Behav Neurosci. 2015 Sep;15(3):523-36 [PMID: 25801925]
  42. Nat Methods. 2011 Jun 26;8(8):665-70 [PMID: 21706013]

MeSH Term

Humans
Learning
Morals
Bias
Pain
Prefrontal Cortex

Word Cloud

Created with Highcharts 10.0.0outcomesself-moneyother-shocksindividualLearningchoiceslearningbasedseparatelyexpectedvaluesreflectedvaluationparameterpredictactionmorallyconflictingsituationsessentialsocialdecision-makingpoorlyunderstoodtestedformsReinforcementTheorycaptureparticipantslearnchooseadaptchangescontingenciesfindbetterdescribedreinforcementmodelcurrentvalueonecombinedhistoricalpastParticipantstracksubstantialdifferencepreferencebalancingrelativeweightalsopredictedindependentcostlyhelpingtaskexpectationsbiasedtowardfavoredoutcomefMRIrevealedbiasventromedialprefrontalcortexpain-observationnetworkrepresentedpainpredictionerrorsindependentlypreferencesNeuro-computationalmechanismsbiasesaction-outcomemoralconflict

Similar Articles

Cited By