Tissue-embedded stretchable nanoelectronics reveal endothelial cell-mediated electrical maturation of human 3D cardiac microtissues.

Zuwan Lin, Jessica C Garbern, Ren Liu, Qiang Li, Estela Mancheño Juncosa, Hannah L T Elwell, Morgan Sokol, Junya Aoyama, Undine-Sophie Deumer, Emma Hsiao, Hao Sheng, Richard T Lee, Jia Liu
Author Information
  1. Zuwan Lin: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. ORCID
  2. Jessica C Garbern: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. ORCID
  3. Ren Liu: School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
  4. Qiang Li: School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA. ORCID
  5. Estela Mancheño Juncosa: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  6. Hannah L T Elwell: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. ORCID
  7. Morgan Sokol: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. ORCID
  8. Junya Aoyama: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. ORCID
  9. Undine-Sophie Deumer: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. ORCID
  10. Emma Hsiao: School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
  11. Hao Sheng: School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA. ORCID
  12. Richard T Lee: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. ORCID
  13. Jia Liu: School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA. ORCID

Abstract

Clinical translation of stem cell therapies for heart disease requires electrical integration of transplanted cardiomyocytes. Generation of electrically matured human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is critical for electrical integration. Here, we found that hiPSC-derived endothelial cells (hiPSC-ECs) promoted the expression of selected maturation markers in hiPSC-CMs. Using tissue-embedded stretchable mesh nanoelectronics, we achieved a long-term stable map of human three-dimensional (3D) cardiac microtissue electrical activity. The results revealed that hiPSC-ECs accelerated the electrical maturation of hiPSC-CMs in 3D cardiac microtissues. Machine learning-based pseudotime trajectory inference of cardiomyocyte electrical signals further revealed the electrical phenotypic transition path during development. Guided by the electrical recording data, single-cell RNA sequencing identified that hiPSC-ECs promoted cardiomyocyte subpopulations with a more mature phenotype, and multiple ligand-receptor interactions were up-regulated between hiPSC-ECs and hiPSC-CMs, revealing a coordinated multifactorial mechanism of hiPSC-CM electrical maturation. Collectively, these findings show that hiPSC-ECs drive hiPSC-CM electrical maturation via multiple intercellular pathways.

References

  1. BMC Genomics. 2018 Jun 19;19(1):477 [PMID: 29914354]
  2. J Clin Invest. 2011 Jun;121(6):2301-12 [PMID: 21537080]
  3. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  4. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14769-14778 [PMID: 32541030]
  5. Development. 2004 Apr;131(8):1847-57 [PMID: 15084468]
  6. Nat Biotechnol. 2018 Aug;36(7):597-605 [PMID: 29969440]
  7. Nat Commun. 2018 Nov 21;9(1):4906 [PMID: 30464173]
  8. Hum Mol Genet. 2010 Dec 1;19(23):4625-33 [PMID: 20858598]
  9. Sci Rep. 2018 Jan 19;8(1):1258 [PMID: 29352247]
  10. Nat Rev Cardiol. 2020 Jun;17(6):341-359 [PMID: 32015528]
  11. Nat Commun. 2021 Aug 26;12(1):5142 [PMID: 34446706]
  12. Pediatr Res. 2001 Nov;50(5):569-74 [PMID: 11641449]
  13. Sci Rep. 2019 Sep 12;9(1):13188 [PMID: 31515494]
  14. Sci Transl Med. 2020 Sep 23;12(562): [PMID: 32967972]
  15. Nat Med. 2007 May;13(5):604-12 [PMID: 17417650]
  16. Circ Res. 2020 Apr 10;126(8):1086-1106 [PMID: 32271675]
  17. Cell Stem Cell. 2018 Oct 4;23(4):586-598.e8 [PMID: 30290179]
  18. J Physiol. 2020 Jul;598(14):2923-2939 [PMID: 30816576]
  19. Nat Methods. 2020 Feb;17(2):159-162 [PMID: 31819264]
  20. Development. 2021 Jun 1;148(11): [PMID: 34100064]
  21. Am J Transl Res. 2014 Nov 22;6(6):724-35 [PMID: 25628783]
  22. J Physiol. 2005 May 1;564(Pt 3):683-96 [PMID: 15746173]
  23. Nat Biotechnol. 2019 May;37(5):547-554 [PMID: 30936559]
  24. Nature. 2013 May 16;497(7449):332-7 [PMID: 23575631]
  25. Arterioscler Thromb Vasc Biol. 2018 Mar;38(3):566-574 [PMID: 29301788]
  26. Nat Commun. 2017 Dec 1;8(1):1902 [PMID: 29196619]
  27. Nat Biotechnol. 2021 Jun;39(6):737-746 [PMID: 33558697]
  28. Cell. 2013 May 9;153(4):828-39 [PMID: 23663781]
  29. Cell Stem Cell. 2020 Jun 4;26(6):862-879.e11 [PMID: 32459996]
  30. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  31. Nat Biotechnol. 2019 Dec;37(12):1482-1492 [PMID: 31796933]
  32. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  33. Adv Mater. 2022 Mar;34(11):e2106829 [PMID: 35014735]
  34. Cell Stem Cell. 2022 Apr 7;29(4):503-514 [PMID: 35395186]
  35. Nat Mater. 2012 Nov;11(11):986-94 [PMID: 22922448]
  36. J Biol Chem. 1998 Apr 24;273(17):10261-9 [PMID: 9553078]
  37. Nat Nanotechnol. 2019 Feb;14(2):156-160 [PMID: 30598525]
  38. J Biol Chem. 2007 Nov 30;282(48):34984-93 [PMID: 17925408]
  39. Nature. 1995 Nov 23;378(6555):394-8 [PMID: 7477377]
  40. Front Cardiovasc Med. 2022 May 04;9:857581 [PMID: 35600483]
  41. Methods Mol Biol. 2021;2320:121-133 [PMID: 34302654]
  42. Nat Nanotechnol. 2016 Sep;11(9):776-82 [PMID: 27347837]
  43. Chin Med J (Engl). 2011 Nov;124(22):3800-5 [PMID: 22340244]
  44. Circ Cardiovasc Genet. 2017 Oct;10(5): [PMID: 28974514]
  45. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  46. Circ Res. 2021 Jul 23;129(3):420-434 [PMID: 34092116]
  47. Nat Cell Biol. 2015 Aug;17(8):994-1003 [PMID: 26214132]
  48. Chem Rev. 2022 Mar 9;122(5):5233-5276 [PMID: 34677943]
  49. Annu Rev Physiol. 2006;68:51-66 [PMID: 16460266]
  50. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9562-7 [PMID: 9275162]
  51. Nat Protoc. 2013 Jan;8(1):162-75 [PMID: 23257984]
  52. Nano Lett. 2019 Aug 14;19(8):5781-5789 [PMID: 31347851]
  53. Lab Chip. 2021 Oct 12;21(20):3899-3909 [PMID: 34636821]
  54. Front Cell Dev Biol. 2021 Aug 06;9:715093 [PMID: 34422835]
  55. Circ Res. 2018 Jul 6;123(2):224-243 [PMID: 29976690]
  56. Sci Rep. 2017 Mar 07;7:43210 [PMID: 28266620]
  57. Genes Dev. 2007 May 1;21(9):1098-112 [PMID: 17473172]
  58. Sci Adv. 2022 Aug 26;8(34):eabn2485 [PMID: 36001656]
  59. Circulation. 2020 Jan 28;141(4):285-300 [PMID: 31707831]
  60. Circ Res. 2019 Aug 16;125(5):552-566 [PMID: 31288631]
  61. Stem Cell Reports. 2014 Oct 14;3(4):594-605 [PMID: 25358788]
  62. Nat Biomed Eng. 2020 Apr;4(4):446-462 [PMID: 32284552]
  63. Life Sci. 2021 Aug 1;278:119595 [PMID: 33974931]
  64. Biotechnol J. 2019 Aug;14(8):e1800725 [PMID: 30927511]
  65. Development. 2015 Apr 15;142(8):1528-41 [PMID: 25813541]
  66. Sci Adv. 2019 Aug 23;5(8):eaax0729 [PMID: 31467978]
  67. Circ Arrhythm Electrophysiol. 2009 Apr;2(2):185-94 [PMID: 19808464]
  68. Circ Res. 2000 Sep 1;87(5):346-8 [PMID: 10969030]
  69. Angiogenesis. 2021 May;24(2):327-344 [PMID: 33454888]
  70. Curr Opin Biotechnol. 2021 Dec;72:69-75 [PMID: 34717124]
  71. Nat Mater. 2016 Jun;15(6):679-85 [PMID: 26974408]
  72. Circ Res. 2010 Sep 17;107(6):776-86 [PMID: 20671236]
  73. Nature. 2010 Sep 16;467(7313):285-90 [PMID: 20644535]
  74. Circulation. 2004 Aug 24;110(8):962-8 [PMID: 15302801]
  75. Stem Cell Reports. 2019 May 14;12(5):967-981 [PMID: 31056479]
  76. Nat Methods. 2016 Oct;13(10):875-82 [PMID: 27571550]
  77. Nature. 2022 Jun;606(7912):94-101 [PMID: 35650358]
  78. Nat Nanotechnol. 2015 Jul;10(7):629-636 [PMID: 26053995]
  79. Annu Rev Biomed Eng. 2012;14:113-28 [PMID: 22524391]
  80. Nature. 2014 Jun 12;510(7504):273-7 [PMID: 24776797]

Grants

  1. DP1 DK130673/NIDDK NIH HHS
  2. K08 HL150335/NHLBI NIH HHS
  3. R01 HL137710/NHLBI NIH HHS
  4. R01 HL151684/NHLBI NIH HHS

MeSH Term

Humans
Cells, Cultured
Endothelial Cells
Induced Pluripotent Stem Cells
Myocytes, Cardiac
Electricity
Cell Differentiation

Word Cloud

Created with Highcharts 10.0.0electricalhiPSC-ECsmaturationhiPSC-CMshuman3DcardiacstemintegrationcardiomyocytesendothelialpromotedstretchablenanoelectronicsrevealedmicrotissuescardiomyocytemultiplehiPSC-CMClinicaltranslationcelltherapiesheartdiseaserequirestransplantedGenerationelectricallymaturedinducedpluripotentcell-derivedcriticalfoundhiPSC-derivedcellsexpressionselectedmarkersUsingtissue-embeddedmeshachievedlong-termstablemapthree-dimensionalmicrotissueactivityresultsacceleratedMachinelearning-basedpseudotimetrajectoryinferencesignalsphenotypictransitionpathdevelopmentGuidedrecordingdatasingle-cellRNAsequencingidentifiedsubpopulationsmaturephenotypeligand-receptorinteractionsup-regulatedrevealingcoordinatedmultifactorialmechanismCollectivelyfindingsshowdriveviaintercellularpathwaysTissue-embeddedrevealcell-mediated

Similar Articles

Cited By