Sinomenine ameliorates adjuvant-induced arthritis by inhibiting the autophagy/NETosis/inflammation axis.

H Jiang, Q Lu, J Xu, G Huo, Y Cai, S Geng, H Xu, J Zhang, H Li, K Yuan, G Huang
Author Information
  1. H Jiang: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  2. Q Lu: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  3. J Xu: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  4. G Huo: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  5. Y Cai: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  6. S Geng: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  7. H Xu: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  8. J Zhang: Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  9. H Li: School of Clinical Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.
  10. K Yuan: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China. yuankai@bucm.edu.cn.
  11. G Huang: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China. hgr@bucm.edu.cn.

Abstract

Studies have found that neutrophil extracellular traps (NETs) which are the specific dying form of neutrophil upon activation have fundamental role in the rheumatoid arthritis onset and progression. The purpose of this study was to explore the therapeutic effect of Sinomenine on adjuvant-induced arthritis in mice, and the neutrophil activities regulated by Sinomenine. The rheumatoid arthritis model was established by local injection of adjuvant and the Sinomenine treatment was administered orally for 30 days, during which, arthritic scores were evaluated and the joint diameter was measured to determine disease progression. The joint tissues and serum were acquired for further tests after sacrifice. Cytometric beads assay was performed to measure the concentration of cytokines. For paraffin-embedded ankle tissues, hematoxylin and erosin staining and Safranin O-fast staining were adopted to monitor the tissue changes of joint. In order to analyze the inflammation, NETs and autophagy of neutrophils in vivo, immunohistochemistry assays were applied to detect the protein expression levels in the local joints. To describe the effect brought by Sinomenine on inflammation, autophagy and NETs in vitro, the western blotting and the immunofluorescence assays were performed. The joint symptoms of the adjuvant induced arthritis were alleviated by the Sinomenine treatment significantly in terms of the ankle diameter and scores. The improvement of local histopathology changes and decrease of inflammatory cytokines in the serum also confirmed the efficacy. The expression levels of interleukin-6, P65 and p-P65 in the ankle areas of mice were remarkably reduced by Sinomenine. Compared with the model group, the decreased expression levels of lymphocyte antigen 6 complex and myeloperoxidase in the Sinomenine treating group showed the inhibitory effect of Sinomenine on the neutrophil migration. The expression of protein arginine deiminase type 4 (PAD4), ctrullinated histone H3 (CitH3) and microtubule-associated protein 1 light chain 3B (LC3B) had the similar tendency. Upon activation of lipopolysaccharide (LPS) in vitro, Sinomenine suppressed the phosphorylation of P65, extracellular signal-regulated kinase (ERK) and P38 of neutrophil. Meanwhile, Sinomenine inhibited NETs formation induced by phorbol 12-myristate 13-acetate (PMA), which were demonstrated by the decreased expression of neutrophil elastase (NE), PAD4 and CitH3. Sinomenine also inhibited PMA-induced autophagy in vitro based on the changes of Beclin-1 and LC3B. Sinomenine has good efficacy in treating adjuvant induced arthritis via regulating neutrophil activities. Apart from inhibiting activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, the mechanism includes suppression of NETs formation via autophagy inhibition.

References

  1. Immunopharmacol Immunotoxicol. 2020 Apr;42(2):147-155 [PMID: 32116077]
  2. Genes Immun. 2004 May;5(3):151-7 [PMID: 14749714]
  3. Autoimmun Rev. 2018 Feb;17(2):94-102 [PMID: 29196243]
  4. J Pharm Pharmacol. 2020 Feb;72(2):209-217 [PMID: 31736093]
  5. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):4131-4138 [PMID: 31701766]
  6. Int J Pharm. 2020 Feb 25;576:119001 [PMID: 31893540]
  7. Arthritis Res Ther. 2010;12(2):R42 [PMID: 20226018]
  8. J Immunol Res. 2018 Dec 3;2018:8549329 [PMID: 30622982]
  9. Cancer Lett. 2017 Feb 1;386:12-23 [PMID: 27836733]
  10. Drug Des Devel Ther. 2020 Jun 17;14:2393-2403 [PMID: 32606606]
  11. Am J Manag Care. 2012 Dec;18(13 Suppl):S295-302 [PMID: 23327517]
  12. Cell Res. 2011 Feb;21(2):290-304 [PMID: 21060338]
  13. Cell Rep. 2014 Aug 7;8(3):883-96 [PMID: 25066128]
  14. Trends Mol Med. 2019 Mar;25(3):215-227 [PMID: 30709614]
  15. J Pharm Pharmacol. 2020 Feb;72(2):259-270 [PMID: 31729764]
  16. Biomed Pharmacother. 2019 May;113:108759 [PMID: 30856539]
  17. PLoS One. 2013;8(3):e59257 [PMID: 23555007]
  18. Nature. 2010 Jul 1;466(7302):68-76 [PMID: 20562859]
  19. Expert Opin Ther Targets. 2017 Apr;21(4):433-447 [PMID: 28281906]
  20. Front Immunol. 2018 Sep 26;9:2228 [PMID: 30319663]
  21. Arthritis Res Ther. 2018 Dec 5;20(1):268 [PMID: 30518408]
  22. Int J Pharm. 2020 Jan 5;573:118817 [PMID: 31678520]
  23. Bioorg Med Chem. 2021 Feb 1;31:115986 [PMID: 33412412]
  24. Int Immunopharmacol. 2014 Jan;18(1):135-41 [PMID: 24287449]
  25. Phytomedicine. 2019 Apr;57:403-410 [PMID: 30851515]
  26. Lancet. 2016 Oct 22;388(10055):2023-2038 [PMID: 27156434]
  27. Clin Rheumatol. 2015 Feb;34(2):221-30 [PMID: 25413735]
  28. Sci Transl Med. 2013 Mar 27;5(178):178ra40 [PMID: 23536012]
  29. Nat Rev Immunol. 2018 Feb;18(2):134-147 [PMID: 28990587]
  30. Eur J Pharmacol. 2021 Apr 15;897:173945 [PMID: 33596416]
  31. Curr Med Res Opin. 2018 Nov;34(11):1991-2000 [PMID: 29976110]
  32. Biomolecules. 2015 May 04;5(2):702-23 [PMID: 25946076]
  33. Nat Med. 2017 Mar 7;23(3):279-287 [PMID: 28267716]
  34. Arch Pharm Res. 2015;38(5):575-84 [PMID: 25648633]
  35. Curr Opin Rheumatol. 2015 Jan;27(1):76-82 [PMID: 25415526]
  36. Curr Opin Rheumatol. 2009 May;21(3):279-83 [PMID: 19318947]
  37. IUBMB Life. 2016 Jun;68(6):429-35 [PMID: 27079983]
  38. Ann Rheum Dis. 2008 Mar;67(3):414-7 [PMID: 18006540]
  39. Int Immunopharmacol. 2017 Sep;50:251-262 [PMID: 28711031]
  40. J Control Release. 2021 Jul 10;335:38-48 [PMID: 33965503]
  41. Arthritis Res Ther. 2016 Oct 20;18(1):239 [PMID: 27765067]
  42. J Autoimmun. 2017 Aug;82:31-40 [PMID: 28465139]
  43. Biomed Pharmacother. 2019 Apr;112:108592 [PMID: 30784907]
  44. Immunobiology. 2021 Mar;226(2):152059 [PMID: 33561598]
  45. J Vis Exp. 2020 Feb 6;(156): [PMID: 32091008]
  46. Front Med (Lausanne). 2021 Sep 30;8:735590 [PMID: 34660642]
  47. Int Immunopharmacol. 2018 Dec;65:119-128 [PMID: 30312880]
  48. Clin Exp Immunol. 2006 Jan;143(1):1-5 [PMID: 16367927]
  49. Int J Mol Sci. 2020 Jul 23;21(15): [PMID: 32718086]
  50. Nat Cell Biol. 2018 Oct;20(10):1110-1117 [PMID: 30224761]
  51. Autophagy. 2022 Jan;18(1):73-85 [PMID: 33783320]
  52. Mol Immunol. 2019 Aug;112:188-197 [PMID: 31176198]
  53. Int Immunopharmacol. 2019 Oct;75:105715 [PMID: 31310911]
  54. Cell Physiol Biochem. 2017;43(1):182-194 [PMID: 28854438]
  55. J Nutr Biochem. 2020 Oct;84:108454 [PMID: 32679549]
  56. Arthritis Rheum. 2008 Jul;58(7):1958-67 [PMID: 18576335]
  57. Int J Mol Sci. 2019 Oct 11;20(20): [PMID: 31614480]
  58. Nat Rev Mol Cell Biol. 2014 Nov;15(11):703-8 [PMID: 25315270]
  59. Arch Phys Med Rehabil. 2014 May;95(5):986-995.e1 [PMID: 24462839]
  60. Int J Mol Sci. 2020 Apr 27;21(9): [PMID: 32349289]
  61. Nat Cell Biol. 2019 Jun;21(6):731-742 [PMID: 31086261]
  62. Nat Biotechnol. 2013 Feb;31(2):142-7 [PMID: 23334450]
  63. Arch Phys Med Rehabil. 2021 Jan;102(1):115-131 [PMID: 32339483]
  64. Arthritis Rheumatol. 2015 Jan;67(1):128-39 [PMID: 25319745]

MeSH Term

Mice
Animals
Neutrophils
Extracellular Traps
Inflammation
Arthritis, Rheumatoid
Arthritis, Experimental
Extracellular Signal-Regulated MAP Kinases
Cytokines
Histones
Autophagy

Chemicals

sinomenine
Extracellular Signal-Regulated MAP Kinases
Cytokines
Histones

Word Cloud

Created with Highcharts 10.0.0SinomenineneutrophilarthritisNETsexpressionjointautophagyproteinactivationeffectlocaladjuvantanklechangeslevelsvitroinducedextracellularrheumatoidprogressionadjuvant-inducedmiceactivitiesmodeltreatmentscoresdiametertissuesserumperformedcytokinesstaininginflammationassaysalsoefficacyP65groupdecreasedtreatingPAD4CitH3LC3BkinaseinhibitedformationviainhibitingStudiesfoundtrapsspecificdyingformuponfundamentalroleonsetpurposestudyexploretherapeuticregulatedestablishedinjectionadministeredorally30 daysarthriticevaluatedmeasureddeterminediseaseacquiredtestssacrificeCytometricbeadsassaymeasureconcentrationparaffin-embeddedhematoxylinerosinSafraninO-fastadoptedmonitortissueorderanalyzeneutrophilsvivoimmunohistochemistryapplieddetectjointsdescribebroughtwesternblottingimmunofluorescencesymptomsalleviatedsignificantlytermsimprovementhistopathologydecreaseinflammatoryconfirmedinterleukin-6p-P65areasremarkablyreducedComparedlymphocyteantigen6complexmyeloperoxidaseshowedinhibitorymigrationargininedeiminasetype4ctrullinatedhistoneH3microtubule-associated1lightchain3BsimilartendencyUponlipopolysaccharideLPSsuppressedphosphorylationsignal-regulatedERKP38Meanwhilephorbol12-myristate13-acetatePMAdemonstratedelastaseNEPMA-inducedbasedBeclin-1goodregulatingApartnuclearfactorkappa-BNF-κBmitogen-activatedMAPKpathwaysmechanismincludessuppressioninhibitionamelioratesautophagy/NETosis/inflammationaxis

Similar Articles

Cited By