Decreased Paneth cell α-defensins promote fibrosis in a choline-deficient L-amino acid-defined high-fat diet-induced mouse model of nonalcoholic steatohepatitis via disrupting intestinal microbiota.

Shunta Nakamura, Kiminori Nakamura, Yuki Yokoi, Yu Shimizu, Shuya Ohira, Mizu Hagiwara, Zihao Song, Li Gan, Tomoyasu Aizawa, Daigo Hashimoto, Takanori Teshima, Andre J Ouellette, Tokiyoshi Ayabe
Author Information
  1. Shunta Nakamura: Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  2. Kiminori Nakamura: Graduate School of Life Science, Hokkaido University, Sapporo, Japan. kiminori@sci.hokudai.ac.jp.
  3. Yuki Yokoi: Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  4. Yu Shimizu: Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
  5. Shuya Ohira: Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  6. Mizu Hagiwara: Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  7. Zihao Song: Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  8. Li Gan: Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  9. Tomoyasu Aizawa: Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
  10. Daigo Hashimoto: Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
  11. Takanori Teshima: Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
  12. Andre J Ouellette: Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  13. Tokiyoshi Ayabe: Graduate School of Life Science, Hokkaido University, Sapporo, Japan. ayabe@sci.hokudai.ac.jp.

Abstract

Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fibrosis that develops from fatty liver. Disruption of intestinal microbiota homeostasis, dysbiosis, is associated with fibrosis development in NASH. An antimicrobial peptide α-defensin secreted by Paneth cells in the small intestine is known to regulate composition of the intestinal microbiota. However, involvement of α-defensin in NASH remains unknown. Here, we show that in diet-induced NASH model mice, decrease of fecal α-defensin along with dysbiosis occurs before NASH onset. When α-defensin levels in the intestinal lumen are restored by intravenous administration of R-Spondin1 to induce Paneth cell regeneration or by oral administration of α-defensins, liver fibrosis is ameliorated with dissolving dysbiosis. Furthermore, R-Spondin1 and α-defensin improved liver pathologies together with different features in the intestinal microbiota. These results indicate that decreased α-defensin secretion induces liver fibrosis through dysbiosis, further suggesting Paneth cell α-defensin as a potential therapeutic target for NASH.

References

  1. J Biol Chem. 2007 Dec 28;282(52):37298-302 [PMID: 17986448]
  2. Front Immunol. 2020 Sep 09;11:2065 [PMID: 33013873]
  3. Cell. 2018 Mar 8;172(6):1198-1215 [PMID: 29522742]
  4. Sci Rep. 2021 May 10;11(1):9915 [PMID: 33972646]
  5. J Hepatol. 2014 Sep;61(3):617-25 [PMID: 24815875]
  6. Diabetologia. 2014 Apr;57(4):809-18 [PMID: 24356748]
  7. Anal Biochem. 2013 Dec 15;443(2):124-31 [PMID: 23994564]
  8. Biochem Biophys Res Commun. 2020 Jul 23;528(2):305-310 [PMID: 32475638]
  9. BMC Microbiol. 2019 Jun 13;19(1):130 [PMID: 31195972]
  10. Am J Physiol Gastrointest Liver Physiol. 2004 Jun;286(6):G1050-8 [PMID: 14715526]
  11. J Innate Immun. 2011;3(3):315-26 [PMID: 21099205]
  12. J Biol Chem. 1992 Nov 15;267(32):23216-25 [PMID: 1429669]
  13. Nature. 2003 Apr 3;422(6931):522-6 [PMID: 12660734]
  14. J Biol Chem. 2011 Nov 11;286(45):39336-48 [PMID: 21941003]
  15. Nutrients. 2020 Nov 20;12(11): [PMID: 33233570]
  16. Microorganisms. 2020 Aug 12;8(8): [PMID: 32806628]
  17. Arch Oral Biol. 2006 Feb;51(2):89-95 [PMID: 16076461]
  18. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  19. Front Cell Infect Microbiol. 2017 Sep 05;7:387 [PMID: 28929087]
  20. Hepatology. 2016 Jul;64(1):73-84 [PMID: 26707365]
  21. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  22. Hepatology. 2019 Jun;69(6):2672-2682 [PMID: 30179269]
  23. Hepatology. 2017 May;65(5):1557-1565 [PMID: 28130788]
  24. J Pathol. 2011 Oct;225(2):276-84 [PMID: 21630271]
  25. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15718-23 [PMID: 15505215]
  26. Infect Immun. 1994 Nov;62(11):5040-7 [PMID: 7927786]
  27. ISME J. 2011 Oct;5(10):1571-9 [PMID: 21472016]
  28. Life Sci Alliance. 2020 Apr 28;3(6): [PMID: 32345659]
  29. J Cell Biochem. 2010 Aug 15;110(6):1447-56 [PMID: 20506389]
  30. J Microbiol Biotechnol. 2020 Feb 28;30(2):287-295 [PMID: 31635444]
  31. Biochem Biophys Res Commun. 2021 Mar 19;545:14-19 [PMID: 33529805]
  32. Front Immunol. 2020 Apr 15;11:646 [PMID: 32351509]
  33. J Biol Chem. 2002 Feb 1;277(5):3793-800 [PMID: 11724775]
  34. Nat Rev Gastroenterol Hepatol. 2018 Jul;15(7):397-411 [PMID: 29748586]
  35. Sci Rep. 2019 Feb 25;9(1):2710 [PMID: 30804449]
  36. Nature. 2006 Dec 21;444(7122):1022-3 [PMID: 17183309]
  37. Blood. 2012 Jul 5;120(1):223-31 [PMID: 22535662]
  38. Nat Commun. 2020 Oct 9;11(1):5104 [PMID: 33037214]
  39. Trends Immunol. 2018 Sep;39(9):677-696 [PMID: 29716793]
  40. Hepatol Commun. 2018 Dec 27;3(2):246-261 [PMID: 30766962]
  41. JCI Insight. 2020 Oct 15;5(20): [PMID: 33055426]
  42. Biochem Biophys Res Commun. 2007 Aug 31;360(3):609-14 [PMID: 17617378]
  43. Annu Rev Pathol. 2018 Jan 24;13:321-350 [PMID: 29414249]
  44. Nutrients. 2019 Nov 18;11(11): [PMID: 31752111]
  45. J Cell Biol. 1992 Aug;118(4):929-36 [PMID: 1500431]
  46. J Exp Med. 2017 Dec 4;214(12):3507-3518 [PMID: 29066578]
  47. Protein Expr Purif. 2015 Aug;112:21-8 [PMID: 25913370]
  48. Lancet. 2000 Apr 29;355(9214):1518-9 [PMID: 10801176]
  49. Science. 2005 Aug 19;309(5738):1256-9 [PMID: 16109882]
  50. J Exp Med. 2011 Feb 14;208(2):285-94 [PMID: 21282378]
  51. J Biol Chem. 2018 Jan 5;293(1):132-147 [PMID: 29133525]
  52. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  53. EMBO Mol Med. 2019 Feb;11(2): [PMID: 30591521]
  54. Transpl Infect Dis. 2015 Oct;17(5):702-6 [PMID: 26198302]
  55. Nat Metab. 2019 Jan;1(1):34-46 [PMID: 32694818]
  56. Gut Microbes. 2015;6(3):173-81 [PMID: 25915459]
  57. Infect Immun. 2011 Jan;79(1):459-73 [PMID: 21041494]
  58. Hepatology. 2013 Feb;57(2):601-9 [PMID: 23055155]
  59. Biosci Microbiota Food Health. 2016;35(2):57-67 [PMID: 27200259]
  60. Nat Rev Gastroenterol Hepatol. 2020 May;17(5):279-297 [PMID: 32152478]
  61. Cell Mol Life Sci. 2011 Jul;68(13):2215-29 [PMID: 21560070]
  62. Nat Immunol. 2010 Jan;11(1):76-83 [PMID: 19855381]
  63. Hepatology. 2016 Jun;63(6):2032-43 [PMID: 26663351]
  64. Nat Immunol. 2000 Aug;1(2):113-8 [PMID: 11248802]
  65. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  66. J Exp Med. 2019 Nov 4;216(11):2602-2618 [PMID: 31420376]
  67. Hepatology. 2016 Mar;63(3):764-75 [PMID: 26600078]

MeSH Term

Animals
Mice
alpha-Defensins
Amino Acids
Choline
Diet, High-Fat
Dysbiosis
Gastrointestinal Microbiome
Liver Cirrhosis
Mice, Inbred C57BL
Non-alcoholic Fatty Liver Disease
Paneth Cells

Chemicals

alpha-Defensins
Amino Acids
Choline

Word Cloud

Created with Highcharts 10.0.0α-defensinNASHliverfibrosisintestinalmicrobiotadysbiosisPanethcellsteatohepatitisdiet-inducedmodeladministrationR-Spondin1α-defensinsNonalcoholicchronicdiseasecharacterizeddevelopsfattyDisruptionhomeostasisassociateddevelopmentantimicrobialpeptidesecretedcellssmallintestineknownregulatecompositionHoweverinvolvementremainsunknownshowmicedecreasefecalalongoccursonsetlevelslumenrestoredintravenousinduceregenerationoralameliorateddissolvingFurthermoreimprovedpathologiestogetherdifferentfeaturesresultsindicatedecreasedsecretioninducessuggestingpotentialtherapeutictargetDecreasedpromotecholine-deficientL-aminoacid-definedhigh-fatmousenonalcoholicviadisrupting

Similar Articles

Cited By