A quantum information processing machine for computing by observables.

F Remacle, R D Levine
Author Information
  1. F Remacle: Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium.
  2. R D Levine: The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. ORCID

Abstract

A quantum machine that accepts an input and processes it in parallel is described. The logic variables of the machine are not wavefunctions (qubits) but observables (i.e., operators) and its operation is described in the Heisenberg picture. The active core is a solid-state assembly of small nanosized colloidal quantum dots (QDs) or dimers of dots. The size dispersion of the QDs that causes fluctuations in their discrete electronic energies is a limiting factor. The input to the machine is provided by a train of very brief laser pulses, at least four in number. The coherent band width of each ultrashort pulse needs to span at least several and preferably all the single electron excited states of the dots. The spectrum of the QD assembly is measured as a function of the time delays between the input laser pulses. The dependence of the spectrum on the time delays can be Fourier transformed to a frequency spectrum. This spectrum of a finite range in time is made up of discrete pixels. These are the visible, raw, basic logic variables. The spectrum is analyzed to determine a possibly smaller number of principal components. A Lie-algebraic point of view is used to explore the use of the machine to emulate the dynamics of other quantum systems. An explicit example demonstrates the considerable quantum advantage of our scheme.

Keywords

References

  1. Nat Commun. 2022 Mar 4;13(1):1166 [PMID: 35246519]
  2. Annu Rev Phys Chem. 2009;60:21-38 [PMID: 18851709]
  3. J Phys Chem Lett. 2020 Sep 3;11(17):6990-6995 [PMID: 32787197]
  4. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11940-11946 [PMID: 32409603]
  5. Nat Commun. 2013;4:1390 [PMID: 23340430]
  6. Nano Lett. 2012 Feb 8;12(2):880-6 [PMID: 22201519]
  7. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17183-8 [PMID: 24043793]
  8. Phys Chem Chem Phys. 2016 Sep 21;18(37):26199-26204 [PMID: 27722564]
  9. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17615-20 [PMID: 21997214]
  10. J Phys Chem Lett. 2016 Jan 21;7(2):250-8 [PMID: 26711855]
  11. J Phys Chem Lett. 2014 Jan 2;5(1):196-204 [PMID: 24719679]
  12. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10324-9 [PMID: 20479229]
  13. Nat Commun. 2014 Dec 18;5:5869 [PMID: 25519819]
  14. J Chem Phys. 2021 Jan 7;154(1):014301 [PMID: 33412883]
  15. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21022-21030 [PMID: 32817545]
  16. J Phys Chem Lett. 2018 Apr 19;9(8):1964-1969 [PMID: 29608071]
  17. Small. 2016 Apr 27;12(16):2234-44 [PMID: 26849032]
  18. Nature. 2017 Mar 29;543(7647):647-656 [PMID: 28358065]
  19. Biochim Biophys Acta Bioenerg. 2019 Apr 1;1860(4):271-285 [PMID: 30579778]
  20. J Biochem Biophys Methods. 1994 Jan;28(1):1-33 [PMID: 8151067]
  21. J Phys Chem C Nanomater Interfaces. 2021 Jun 24;125(24):13096-13108 [PMID: 34276867]
  22. J Phys Chem Lett. 2022 Feb 10;13(5):1266-1271 [PMID: 35089715]
  23. J Phys Chem Lett. 2021 Apr 29;12(16):3983-3988 [PMID: 33877838]
  24. Nature. 2017 Sep 13;549(7671):195-202 [PMID: 28905917]
  25. Chem Soc Rev. 2022 Aug 1;51(15):6475-6573 [PMID: 35849066]
  26. Annu Rev Phys Chem. 2015 Apr;66:667-90 [PMID: 25664841]

Grants

  1. #T.0205.20/FNRS | Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA)

Word Cloud

Created with Highcharts 10.0.0quantummachinespectruminputlogicvariablesdotstimedescribedobservablesassemblyQDsdiscreteelectroniclaserpulsesleastnumberdelaysdynamicsinformationprocessingacceptsprocessesparallelwavefunctionsqubitsie operatorsoperationHeisenbergpictureactivecoresolid-statesmallnanosizedcolloidaldimerssizedispersioncausesfluctuationsenergieslimitingfactorprovidedtrainbrieffourcoherentbandwidthultrashortpulseneedsspanseveralpreferablysingleelectronexcitedstatesQDmeasuredfunctiondependencecanFouriertransformedfrequencyfiniterangemadepixelsvisiblerawbasicThe spectrumanalyzeddeterminepossiblysmallerprincipalcomponentsA Lie-algebraicpointviewusedexploreuseemulatesystemsexplicitexampledemonstratesconsiderableadvantageschemecomputing2DspectroscopyLiealgebraiccoherencessingularvaluedecomposition

Similar Articles

Cited By (3)