Mechanical energy on anaerobic capacity during a supramaximal treadmill running in men: Is there influence between runners and active individuals?

Alessandro Moura Zagatto, Joel Abraham Martínez González, Rodrigo Araujo Bonetti de Poli, Fabio Augusto Barbieri, Leonardo de Los Santos Bloedow, Leonardo Peyré-Tartaruga
Author Information
  1. Alessandro Moura Zagatto: Post-Graduate Program in Movement Sciences, Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, SP, Brazil. ORCID
  2. Joel Abraham Martínez González: Post-Graduate Program in Movement Sciences, Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, SP, Brazil. ORCID
  3. Rodrigo Araujo Bonetti de Poli: Post-Graduate Program in Movement Sciences, Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, SP, Brazil. ORCID
  4. Fabio Augusto Barbieri: Post-Graduate Program in Movement Sciences, Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, SP, Brazil. ORCID
  5. Leonardo de Los Santos Bloedow: Universidade Federal do Rio Grande do Sul, Exercise Research Laboratory, Porto Alegre, RS, Brazil. ORCID
  6. Leonardo Peyré-Tartaruga: Universidade Federal do Rio Grande do Sul, Exercise Research Laboratory, Porto Alegre, RS, Brazil. ORCID

Abstract

This study verified whether mechanical variables influence the anaerobic capacity outcome on treadmill running and whether these likely influences were dependent of running experience. Seventeen physical active and 18 amateur runners, males, performed a graded exercise test and constant load exhaustive running efforts at 115% of intensity associated to maximal oxygen consumption. During the constant load were determined the metabolic responses (i.e., gas exchange and blood lactate) to estimate the energetic contribution and anaerobic capacity as well as kinematic responses. The runners showed higher anaerobic capacity (16.6%; p = 0.005), but lesser time to exercise failure (-18.8%; p = 0.03) than active subjects. In addition, the stride length (21.4%; p = 0.00001), contact phase duration (-11.3%; p = 0.005), and vertical work (-29.9%; p = 0.015). For actives, the anaerobic capacity did not correlate significantly with any physiologic, kinematic, and mechanical variables and no regression model was fitted using the stepwise multiple regression, while to runners the anaerobic capacity was significantly correlated with phosphagen energetic contribution (r = 0.47; p = 0.047), external power (r = -0.51; p = 0.031), total work (r = -0.54; p = 0.020), external work (r = -0.62; p = 0.006), vertical work (r = -0.63; p = 0.008), and horizontal work (r = -0.61; p = 0.008), and the vertical work and phosphagen energetic contribution presented a coefficient of determination of 62% (p = 0.001). Based on findings, it is possible to assume that for active subjects, the mechanical variables have no influence over the anaerobic capacity, however, for experienced runners, the vertical work and phosphagen energetic contribution have relevant effect over anaerobic capacity output.

Keywords

References

  1. Sports Med. 2010 Apr 1;40(4):285-302 [PMID: 20364874]
  2. Appl Physiol Nutr Metab. 2016 May;41(5):498-503 [PMID: 27109264]
  3. Eur J Appl Physiol. 2012 Nov;112(11):3921-30 [PMID: 22422028]
  4. Eur J Sport Sci. 2019 Jun;19(5):645-652 [PMID: 30452310]
  5. Appl Physiol Nutr Metab. 2015 Sep;40(9):931-7 [PMID: 26300016]
  6. Int J Sports Physiol Perform. 2016 Nov;11(8):1012-1017 [PMID: 26869146]
  7. Med Sci Sports Exerc. 2017 Jul;49(7):1412-1423 [PMID: 28263283]
  8. Scand J Med Sci Sports. 2011 Dec;21(6):e222-30 [PMID: 21210856]
  9. J Sports Sci. 1994 Oct;12(5):447-53 [PMID: 7799473]
  10. J Sports Med Phys Fitness. 2001 Sep;41(3):281-90 [PMID: 11533556]
  11. Int J Sports Med. 2012 Aug;33(8):613-20 [PMID: 22562729]
  12. Front Physiol. 2019 Apr 16;10:415 [PMID: 31040793]
  13. Proc Biol Sci. 2008 Feb 22;275(1633):411-8 [PMID: 18077249]
  14. Eur J Appl Physiol. 2015 Apr;115(4):651-73 [PMID: 25681108]
  15. Eur J Appl Physiol Occup Physiol. 1983;50(2):273-82 [PMID: 6681758]
  16. Int J Sports Med. 2017 Mar;38(3):226-232 [PMID: 28192833]
  17. Sci Rep. 2019 Dec 5;9(1):18422 [PMID: 31804565]
  18. J Sports Sci Med. 2008 Mar 01;7(1):54-9 [PMID: 24150134]
  19. PLoS One. 2017 Feb 9;12(2):e0172032 [PMID: 28182775]
  20. J Strength Cond Res. 2020 Sep;34(9):2465-2475 [PMID: 32205815]
  21. Int J Sports Med. 2007 Oct;28(10):836-43 [PMID: 17497577]
  22. J Biomech. 1996 Sep;29(9):1223-30 [PMID: 8872282]
  23. Pflugers Arch. 1997 Nov;434(6):678-84 [PMID: 9305998]
  24. J Sports Sci. 1996 Aug;14(4):321-7 [PMID: 8887211]
  25. Nat Metab. 2020 Sep;2(9):817-828 [PMID: 32747792]
  26. Physiol Rep. 2023 Mar;11(5):e15564 [PMID: 36898692]
  27. Respir Physiol. 1999 Dec 1;118(2-3):103-15 [PMID: 10647856]
  28. Int J Sports Med. 1985 Aug;6(4):197-201 [PMID: 4044103]
  29. Scand J Med Sci Sports. 2022 Feb;32(2):402-413 [PMID: 34706104]
  30. J Strength Cond Res. 2010 Apr;24(4):942-9 [PMID: 20300034]
  31. Int J Sports Med. 2015 Dec;36(14):1156-62 [PMID: 26422055]
  32. J Appl Physiol (1985). 1988 Jan;64(1):50-60 [PMID: 3356666]
  33. J Exp Biol. 1995 Feb;198(Pt 2):379-93 [PMID: 7699313]
  34. J Sports Med Phys Fitness. 2008 Jun;48(2):138-42 [PMID: 18427406]
  35. J Appl Physiol. 1966 Sep;21(5):1662-4 [PMID: 5923240]
  36. Front Physiol. 2019 Apr 10;10:352 [PMID: 31024332]
  37. Hum Mov Sci. 2019 Jun 13;66:487-496 [PMID: 31203018]
  38. J Sports Sci. 2017 Dec;35(24):2453-2460 [PMID: 28045340]
  39. J Appl Physiol (1985). 2019 Dec 1;127(6):1599-1610 [PMID: 31622158]
  40. Int J Sports Physiol Perform. 2011 Mar;6(1):8-24 [PMID: 21487146]
  41. J Strength Cond Res. 2009 Sep;23(6):1820-7 [PMID: 19675478]
  42. J Physiol. 2022 Jul;600(13):3069-3081 [PMID: 35593645]
  43. Sci Rep. 2017 Feb 13;7:42485 [PMID: 28211905]
  44. Eur J Appl Physiol. 2002 Aug;87(4-5):388-92 [PMID: 12172878]
  45. Eur J Appl Physiol. 2015 May;115(5):891-903 [PMID: 25481506]
  46. J Biomech. 1998 May;31(5):463-8 [PMID: 9727344]
  47. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jan;46(1):79-83 [PMID: 457534]
  48. J Physiol. 1977 Jun;268(2):467--81 [PMID: 874922]
  49. Front Nutr. 2018 Sep 20;5:86 [PMID: 30294600]
  50. Exp Physiol. 2021 Sep;106(9):1897-1908 [PMID: 34197674]
  51. Int J Sports Med. 2010 Jul;31(7):477-81 [PMID: 20432195]
  52. Int J Sports Med. 2016 Aug;37(9):700-7 [PMID: 27176893]
  53. J Strength Cond Res. 2009 May;23(3):751-5 [PMID: 19387405]
  54. Scand J Med Sci Sports. 2016 Jun;26(6):648-58 [PMID: 25996964]
  55. Front Physiol. 2018 Dec 11;9:1789 [PMID: 30618802]
  56. Res Q Exerc Sport. 2012 Sep;83(3):367-75 [PMID: 22978185]

MeSH Term

Male
Humans
Exercise Test
Anaerobiosis
Oxygen Consumption
Running
Exercise

Word Cloud

Created with Highcharts 10.0.0p = 0anaerobiccapacityworkrunnersr = -0mechanicalrunningactiveenergeticcontributionverticalvariablesinfluencephosphagenwhethertreadmillphysicalexerciseconstantloadoxygenconsumptionmetabolicresponseslactatekinematic005timefailuresubjectssignificantlyregressionexternal008studyverifiedoutcomelikelyinfluencesdependentexperienceSeventeen18amateurmalesperformedgradedtestexhaustiveefforts115%intensityassociatedmaximaldeterminediegasexchangebloodestimatewellshowedhigher166%lesser-188%03additionstridelength214%00001contactphaseduration-113%-299%015activescorrelatephysiologicmodelfittedusingstepwisemultiplecorrelatedr = 047047power51031total540206200663horizontal61presentedcoefficientdetermination62%001BasedfindingspossibleassumehoweverexperiencedrelevanteffectoutputMechanicalenergysupramaximalmen:individuals?bloodexcesspostexercisenon-mitochondrialpathwaysfitnessleveleffort

Similar Articles

Cited By