Transcriptome-Based Evaluation of Optimal Reference Genes for Quantitative Real-Time PCR in Yak Stomach throughout the Growth Cycle.

Qi Min, Lu Yang, Yu Wang, Yili Liu, Mingfeng Jiang
Author Information
  1. Qi Min: Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China. ORCID
  2. Lu Yang: College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
  3. Yu Wang: College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
  4. Yili Liu: College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
  5. Mingfeng Jiang: College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.

Abstract

Efficient nutritional assimilation and energy metabolism in the stomachs of yaks contribute to their adaption to harsh environments. Accurate gene expression profile analysis will help further reveal the molecular mechanism of nutrient and energy metabolism in the yak stomach. RT-qPCR is regarded as an accurate and dependable method for analyzing gene expression. The selection of reference genes is essential to obtain meaningful RT-qPCR results, especially in longitudinal gene expression studies of tissues and organs. Our objective was to select and validate optimal reference genes from across the transcriptome as internal controls for longitudinal gene expression studies in the yak stomach. In this study, 15 candidate reference genes (CRGs) were determined according to transcriptome sequencing (RNA-seq) results and the previous literature. The expression levels of these 15 CRGs were quantified using RT-qPCR in the yak stomach, including the rumen, reticulum, omasum and abomasum at five stages: 0 days, 20 days, 60 days, 15 months and three years old (adult). Subsequently, the expression stabilities of these 15 CRGs were evaluated via four algorithms: geNorm, NormFinder, BestKeeper and the comparative C method. Furthermore, RefFinder was employed to obtain a comprehensive ranking of the stability of CRGs. The analysis results indicate that , and are the most stable genes in the yak stomach throughout the growth cycle. In addition, to verify the reliability of the selected CRGs, the relative expression levels of were quantified via RT-qPCR using the three most stable or the three least stable CRGs. Overall, we recommend combining , and as reference genes for the normalization of RT-qPCR data in the yak stomach throughout the growth cycle.

Keywords

References

  1. Animals (Basel). 2019 Nov 10;9(11): [PMID: 31717620]
  2. Methods. 2010 Apr;50(4):227-30 [PMID: 19969088]
  3. BMC Genomics. 2011 Mar 21;12:156 [PMID: 21418615]
  4. Anim Nutr. 2021 Dec;7(4):1145-1151 [PMID: 34754956]
  5. BMC Genomics. 2020 Jul 18;21(1):493 [PMID: 32682387]
  6. J Anim Sci. 2002 Jun;80(6):1538-44 [PMID: 12078735]
  7. PLoS One. 2014 Mar 27;9(3):e93287 [PMID: 24676354]
  8. Anim Health Res Rev. 2020 Jun;21(1):3-14 [PMID: 31918781]
  9. PLoS One. 2013 Oct 04;8(10):e75271 [PMID: 24124481]
  10. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  11. J Cancer. 2020 Feb 3;11(8):2252-2264 [PMID: 32127952]
  12. PLoS One. 2016 Jan 25;11(1):e0147705 [PMID: 26808329]
  13. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]
  14. PLoS One. 2017 Feb 24;12(2):e0172674 [PMID: 28234977]
  15. Physiol Genomics. 2007 May 11;29(3):312-9 [PMID: 17284669]
  16. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  17. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  18. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  19. J Dairy Sci. 2017 Jul;100(7):5984-5995 [PMID: 28527800]
  20. Ann Anat. 2009 Nov;191(5):469-76 [PMID: 19619994]
  21. Annu Rev Pharmacol Toxicol. 2000;40:617-47 [PMID: 10836149]
  22. PLoS One. 2020 Feb 6;15(2):e0228493 [PMID: 32027673]
  23. J Dairy Sci. 2014 Feb;97(2):902-10 [PMID: 24342693]
  24. PeerJ. 2019 Sep 19;7:e7645 [PMID: 31579584]
  25. Fish Shellfish Immunol. 2020 Mar;98:218-223 [PMID: 31935552]
  26. BMC Genomics. 2018 Apr 13;19(1):251 [PMID: 29653512]
  27. J Appl Genet. 2013 Nov;54(4):391-406 [PMID: 24078518]
  28. Crit Rev Food Sci Nutr. 2014;54(3):292-302 [PMID: 24188303]
  29. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  30. Animals (Basel). 2021 Nov 02;11(11): [PMID: 34827869]
  31. BMC Genomics. 2009 Apr 16;10:161 [PMID: 19371429]
  32. Nat Genet. 2012 Jul 01;44(8):946-9 [PMID: 22751099]
  33. J Dairy Sci. 2020 May;103(5):4846-4857 [PMID: 32229123]
  34. EMBO J. 2004 Jun 16;23(12):2336-47 [PMID: 15167894]
  35. Methods Mol Biol. 2013;1027:19-45 [PMID: 23912981]
  36. PeerJ. 2016 Mar 08;4:e1762 [PMID: 26989612]
  37. Sci China Life Sci. 2021 Jan;64(1):1-21 [PMID: 33165812]
  38. J Dairy Sci. 2006 Oct;89(10):4066-9 [PMID: 16960083]
  39. Animal. 2010 Jul;4(7):1057-74 [PMID: 22444609]

Grants

  1. 2021YFYZ0001;2021YFYZ0001;2021YFN0001/Natural Science Foundation of Sichuan Province;The Sichuan Science and Technology Program

Word Cloud

Created with Highcharts 10.0.0expressionyakstomachRT-qPCRCRGsgenereferencegenes15resultsdaysthreestablethroughoutenergymetabolismanalysismethodobtainlongitudinalstudiestranscriptomelevelsquantifiedusingviagrowthcycleEfficientnutritionalassimilationstomachsyakscontributeadaptionharshenvironmentsAccurateprofilewillhelprevealmolecularmechanismnutrientregardedaccuratedependableanalyzingselectionessentialmeaningfulespeciallytissuesorgansobjectiveselectvalidateoptimalacrossinternalcontrolsstudycandidatedeterminedaccordingsequencingRNA-seqpreviousliteratureincludingrumenreticulumomasumabomasumfivestages:02060monthsyearsoldadultSubsequentlystabilitiesevaluatedfouralgorithms:geNormNormFinderBestKeepercomparativeCFurthermoreRefFinderemployedcomprehensiverankingstabilityindicateadditionverifyreliabilityselectedrelativeleastOverallrecommendcombiningnormalizationdataTranscriptome-BasedEvaluationOptimalReferenceGenesQuantitativeReal-TimePCRYakStomachGrowthCycletranscriptome-wide

Similar Articles

Cited By