MicroRNA Profiles in Intestinal Epithelial Cells in a Mouse Model of Sepsis.

Siqingaowa Caidengbate, Yuichi Akama, Anik Banerjee, Khwanchanok Mokmued, Eiji Kawamoto, Arong Gaowa, Louise D McCullough, Motomu Shimaoka, Juneyoung Lee, Eun Jeong Park
Author Information
  1. Siqingaowa Caidengbate: Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan. ORCID
  2. Yuichi Akama: Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan. ORCID
  3. Anik Banerjee: Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
  4. Khwanchanok Mokmued: Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
  5. Eiji Kawamoto: Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan. ORCID
  6. Arong Gaowa: Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan. ORCID
  7. Louise D McCullough: Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
  8. Motomu Shimaoka: Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
  9. Juneyoung Lee: Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
  10. Eun Jeong Park: Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan. ORCID

Abstract

Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored. In this study, we analyzed the expression profile of microRNAs (miRNAs) in IECs isolated from a mouse model of sepsis generated via cecal slurry injection. Among 239 miRNAs, 14 miRNAs were upregulated, and 9 miRNAs were downregulated in the IECs by sepsis. Upregulated miRNAs in IECs from septic mice, particularly miR-149-5p, miR-466q, miR-495, and miR-511-3p, were seen to exhibit complex and global effects on gene regulation networks. Interestingly, miR-511-3p has emerged as a diagnostic marker in this sepsis model due to its increase in blood in addition to IECs. As expected, mRNAs in the IECs were remarkably altered by sepsis; specifically, 2248 mRNAs were decreased, while 612 mRNAs were increased. This quantitative bias may be possibly derived, at least partly, from the direct effects of the sepsis-increased miRNAs on the comprehensive expression of mRNAs. Thus, current in silico data indicate that there are dynamic regulatory responses of miRNAs to sepsis in IECs. In addition, the miRNAs that were increased with sepsis had enriched downstream pathways including Wnt signaling, which is associated with wound healing, and FGF/FGFR signaling, which has been linked to chronic inflammation and fibrosis. These modifications in miRNA networks in IECs may lead to both pro- and anti-inflammatory effects in sepsis. The four miRNAs discovered above were shown to putatively target , , , , or , via in silico analysis, which were associated with Wnt or inflammatory pathways and selected for further study. The expressions of these target genes were downregulated in sepsis IECs, possibly through posttranscriptional modifications of these miRNAs. Taken together, our study suggests that IECs display a distinctive miRNA profile which is capable of comprehensively and functionally reshaping the IEC-specific mRNA landscape in a sepsis model.

Keywords

References

  1. J Cell Mol Med. 2021 Apr;25(8):4148-4156 [PMID: 33609082]
  2. J Cell Mol Med. 2022 Sep;26(17):4710-4720 [PMID: 35946046]
  3. Front Cell Infect Microbiol. 2017 Jul 11;7:315 [PMID: 28744451]
  4. JAMA. 2016 Feb 23;315(8):801-10 [PMID: 26903338]
  5. BMB Rep. 2016 May;49(5):263-9 [PMID: 26923304]
  6. Genomics. 2022 May;114(3):110360 [PMID: 35378241]
  7. Nucleic Acids Res. 2020 Jul 2;48(W1):W244-W251 [PMID: 32484539]
  8. BMC Bioinformatics. 2017 Mar 2;18(1):142 [PMID: 28249561]
  9. Exp Biol Med (Maywood). 2017 Jan;242(2):127-139 [PMID: 27633573]
  10. Immunol Cell Biol. 2013 Mar;91(3):204-14 [PMID: 23318659]
  11. Crit Care Med. 2017 Feb;45(2):253-262 [PMID: 27632674]
  12. Immunology. 2019 Dec;158(4):267-280 [PMID: 31509239]
  13. Int J Mol Med. 2020 Feb;45(2):510-518 [PMID: 31894250]
  14. Nature. 2003 Mar 20;422(6929):322-6 [PMID: 12646923]
  15. Int Immunol. 2017 Apr 1;29(4):157-163 [PMID: 28383678]
  16. Immunity. 2015 Sep 15;43(3):488-501 [PMID: 26320657]
  17. Sci Rep. 2015 Dec 09;5:18174 [PMID: 26647826]
  18. Crit Care Med. 2003 Aug;31(8):2137-43 [PMID: 12973171]
  19. Cell. 2000 Jan 7;100(1):157-68 [PMID: 10647940]
  20. Am J Physiol Gastrointest Liver Physiol. 2021 Sep 1;321(3):G344-G354 [PMID: 34287088]
  21. Med Sci Monit. 2017 Sep 30;23:4689-4698 [PMID: 28963864]
  22. Immunology. 2015 Jun;145(2):300-11 [PMID: 25684123]
  23. J Clin Invest. 2018 Nov 1;128(11):4764-4766 [PMID: 30320605]
  24. Mucosal Immunol. 2016 May;9(3):647-58 [PMID: 26376367]
  25. J Surg Res. 2016 Dec;206(2):427-434 [PMID: 27884339]
  26. J Cell Mol Med. 2018 Oct;22(10):5097-5108 [PMID: 30044535]
  27. Int J Mol Sci. 2021 Mar 29;22(7): [PMID: 33805523]
  28. Mol Med Rep. 2019 Mar;19(3):1463-1470 [PMID: 30569167]
  29. Shock. 2007 Dec;28(6):675-683 [PMID: 17621256]
  30. Crit Care. 2008;12(6):R158 [PMID: 19091069]
  31. Trends Immunol. 2018 Sep;39(9):677-696 [PMID: 29716793]
  32. J Trauma Acute Care Surg. 2012 Jun;72(6):1491-501 [PMID: 22695412]
  33. Diagnostics (Basel). 2020 Dec 26;11(1): [PMID: 33375374]
  34. Am J Gastroenterol. 1996 Sep;91(9):1697-710 [PMID: 8792684]
  35. Mucosal Immunol. 2016 Jul;9(4):960-73 [PMID: 26530135]
  36. Intensive Care Med. 2020 Aug;46(8):1536-1551 [PMID: 32591853]
  37. J Physiol. 2016 Sep 1;594(17):4837-47 [PMID: 27581568]
  38. PLoS One. 2014 Dec 22;9(12):e115705 [PMID: 25531402]
  39. Lancet. 2018 Jul 7;392(10141):75-87 [PMID: 29937192]
  40. Cell Signal. 2020 Mar;67:109498 [PMID: 31837465]
  41. Exp Mol Med. 2017 May 26;49(5):e338 [PMID: 28546564]
  42. Ann Transl Med. 2022 May;10(9):523 [PMID: 35928754]
  43. Am J Physiol Gastrointest Liver Physiol. 2015 Apr 15;308(8):G678-90 [PMID: 25721301]
  44. Sci Rep. 2017 Apr 21;7(1):1053 [PMID: 28432352]
  45. Biochim Biophys Acta. 2003 Apr 11;1647(1-2):239-44 [PMID: 12686140]
  46. Gastroenterology. 2018 Feb;154(3):585-598 [PMID: 29031501]
  47. Front Mol Biosci. 2022 May 11;9:854487 [PMID: 35647030]
  48. Shock. 2021 May 1;55(5):676-685 [PMID: 32826815]
  49. Lancet. 2020 Jan 18;395(10219):200-211 [PMID: 31954465]
  50. Gastroenterology. 2006 Feb;130(2):398-411 [PMID: 16472595]
  51. Front Immunol. 2021 Feb 17;11:624279 [PMID: 33679715]
  52. Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9 [PMID: 21071411]
  53. Front Cell Dev Biol. 2019 Jun 20;7:108 [PMID: 31281814]
  54. Toxicol Appl Pharmacol. 2017 Aug 1;328:34-45 [PMID: 28502886]
  55. Front Med (Lausanne). 2021 May 14;8:628302 [PMID: 34055825]
  56. Hum Mol Genet. 2000 Oct;9(16):2395-402 [PMID: 11005794]
  57. Crit Care Clin. 2017 Jan;33(1):167-191 [PMID: 27894496]
  58. Nat Rev Genet. 2008 Jun;9(6):465-76 [PMID: 18463664]
  59. Elife. 2019 Dec 03;8: [PMID: 31793435]
  60. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4 [PMID: 16381832]
  61. Infection. 2018 Dec;46(6):751-760 [PMID: 30003491]
  62. Semin Immunopathol. 2019 May;41(3):379-399 [PMID: 30891628]
  63. Nat Neurosci. 2010 Apr;13(4):423-30 [PMID: 20228804]
  64. Cells. 2022 Mar 14;11(6): [PMID: 35326439]
  65. PLoS One. 2014 May 01;9(5):e94404 [PMID: 24788351]
  66. Int J Mol Sci. 2020 Nov 10;21(22): [PMID: 33182773]
  67. Braz J Infect Dis. 2001 Jun;5(3):103-10 [PMID: 11506772]
  68. Inflammation. 2019 Dec;42(6):1957-1967 [PMID: 31321583]
  69. Biol Pharm Bull. 2017;40(9):1544-1550 [PMID: 28867736]
  70. Cell Mol Gastroenterol Hepatol. 2022;14(2):435-464 [PMID: 35569814]

MeSH Term

Mice
Animals
Gene Expression Profiling
MicroRNAs
Epithelial Cells
Intestines
Sepsis

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0sepsisIECsmiRNAsmRNAsepithelialnetworksstudymodeleffectsmiRNASepsisinflammatoryintestinalexpressionprofileviacecalslurryinjectiondownregulatedmiR-511-3padditionincreasedmaypossiblysilicopathwaysWntsignalingassociatedinflammationmodificationstargetsystemicdisorderleadsdysfunctionmultipleorgansintestinederegulationbarriercontributesdevelopmenttriggeringcontinuousexposureharmfulfactorsHoweversepsis-inducedepigeneticchangesgene-regulationwithincellsremainunexploredanalyzedmicroRNAsisolatedmousegeneratedAmong23914upregulated9UpregulatedsepticmiceparticularlymiR-149-5pmiR-466qmiR-495seenexhibitcomplexglobalgeneregulationInterestinglyemergeddiagnosticmarkerdueincreasebloodexpectedremarkablyalteredspecifically2248decreased612quantitativebiasderivedleastpartlydirectsepsis-increasedcomprehensiveThuscurrentdataindicatedynamicregulatoryresponsesenricheddownstreamincludingwoundhealingFGF/FGFRlinkedchronicfibrosisleadpro-anti-inflammatoryfourdiscoveredshownputativelyanalysisselectedexpressionsgenesposttranscriptionalTakentogethersuggestsdisplaydistinctivecapablecomprehensivelyfunctionallyreshapingIEC-specificmRNAlandscapeMicroRNAProfilesIntestinalEpithelialCellsMouseModelcell

Similar Articles

Cited By