Inactivation of Human Norovirus GII.4 and in the Sea Squirt () by Floating Electrode-Dielectric Barrier Discharge Plasma.

Min Gyu Song, So Hee Kim, Eun Bi Jeon, Kwang Soo Ha, Sung Rae Cho, Yeoun Joong Jung, Eun Ha Choi, Jun Sup Lim, Jinsung Choi, Shin Young Park
Author Information
  1. Min Gyu Song: Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
  2. So Hee Kim: Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
  3. Eun Bi Jeon: Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
  4. Kwang Soo Ha: Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea.
  5. Sung Rae Cho: Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea.
  6. Yeoun Joong Jung: Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea.
  7. Eun Ha Choi: Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea. ORCID
  8. Jun Sup Lim: Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea. ORCID
  9. Jinsung Choi: Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea. ORCID
  10. Shin Young Park: Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea. ORCID

Abstract

Human norovirus (HNoV) GII.4 and may be found in sea squirts. Antimicrobial effects of floating electrode-dielectric barrier discharge (FE-DBD) plasma (5-75 min, N 1.5 m/s, 1.1 kV, 43 kHz) treatment were examined. HNoV GII.4 decreased by 0.11-1.29 log copy/μL with increasing duration of treatment time, and further by 0.34 log copy/μL when propidium monoazide (PMA) treatment was added to distinguish infectious viruses. The decimal reduction time (D) of non-PMA and PMA-treated HNoV GII.4 by first-order kinetics were 61.7 (R = 0.97) and 58.8 (R = 0.92) min, respectively. decreased by 0.16-1.5 log CFU/g as treatment duration increased. The D for by first-order kinetics was 65.36 (R = 0.90) min. Volatile basic nitrogen showed no significant difference from the control until 15 min of FE-DBD plasma treatment, increasing after 30 min. The pH did not differ significantly from the control by 45-60 min, and Hunter color in "L" (lightness), "a" (redness), and "b" (yellowness) values reduced significantly as treatment duration increased. Textures appeared to be individual differences but were not changed by treatment. Therefore, this study suggests that FE-DBD plasma has the potential to serve as a new antimicrobial to foster safer consumption of raw sea squirts.

Keywords

References

  1. Ther Adv Med Oncol. 2018 Jul 20;10:1758835918786475 [PMID: 30046358]
  2. Antimicrob Agents Chemother. 2011 Mar;55(3):1053-62 [PMID: 21199923]
  3. Appl Environ Microbiol. 2015 Oct 30;82(2):450-8 [PMID: 26519396]
  4. Environ Res. 2020 Feb;181:108921 [PMID: 31757407]
  5. Curr Opin Microbiol. 2013 Feb;16(1):70-7 [PMID: 23433802]
  6. Epidemiol Infect. 2012 Feb;140(2):276-82 [PMID: 21524343]
  7. Food Microbiol. 2018 Apr;70:85-93 [PMID: 29173644]
  8. Int J Food Microbiol. 2015 May 18;201:17-26 [PMID: 25725459]
  9. Food Microbiol. 2015 Apr;46:46-50 [PMID: 25475265]
  10. Trends Biotechnol. 2020 Nov;38(11):1278-1291 [PMID: 32418663]
  11. Front Microbiol. 2021 Feb 23;12:631174 [PMID: 33708186]
  12. J Clin Microbiol. 2003 Apr;41(4):1548-57 [PMID: 12682144]
  13. Water Res. 2016 Sep 15;101:226-232 [PMID: 27262550]
  14. Foods. 2020 Nov 25;9(12): [PMID: 33255577]
  15. Food Res Int. 2021 Mar;141:110107 [PMID: 33641974]
  16. Rural Remote Health. 2010 Oct-Dec;10(4):1507 [PMID: 20939673]
  17. Front Microbiol. 2019 Apr 02;10:622 [PMID: 31001215]
  18. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7162-7165 [PMID: 29991573]
  19. Front Microbiol. 2018 Oct 11;9:2443 [PMID: 30364306]
  20. Int J Food Microbiol. 2014 Aug 1;184:14-20 [PMID: 24810197]
  21. Life (Basel). 2021 Dec 02;11(12): [PMID: 34947864]
  22. Epidemiol Infect. 2009 May;137(5):626-9 [PMID: 18667107]
  23. J Virol Methods. 2010 Sep;168(1-2):228-32 [PMID: 20599560]
  24. Int J Food Microbiol. 2016 Jan 4;216:40-9 [PMID: 26398283]
  25. Food Environ Virol. 2009 Dec;1(3-4):123-128 [PMID: 20234879]

Grants

  1. 2021R1I1A3A04037468/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0treatmentmin0GII4FE-DBDplasmaHNoVsea1logdurationR=Humannorovirussquirts5decreasedcopy/μLincreasingtimeDfirst-orderkineticsincreasedcontrolsignificantlymayfoundAntimicrobialeffectsfloatingelectrode-dielectricbarrierdischarge5-75Nm/skV43kHzexamined11-12934propidiummonoazidePMAaddeddistinguishinfectiousvirusesdecimalreductionnon-PMAPMA-treated6179758892respectively16-1CFU/g653690Volatilebasicnitrogenshowedsignificantdifference1530pHdiffer45-60Huntercolor"L"lightness"a"redness"b"yellownessvaluesreducedTexturesappearedindividualdifferenceschangedThereforestudysuggestspotentialservenewantimicrobialfostersaferconsumptionrawInactivationNorovirusSeaSquirtFloatingElectrode-DielectricBarrierDischargePlasmaVibrioparahaemolyticusdisinfectionfoodpathogenhumanqualitysquirt

Similar Articles

Cited By